3.用數(shù)學(xué)歸納法證明不等式1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}$>$\frac{n}{2}$(n∈N*),則n=k+1與n=k相比,不等式左邊增加的項(xiàng)數(shù)是(  )
A.1B.k-1C.kD.2k

分析 分別計(jì)算當(dāng)n=k和n=k+1時(shí)左側(cè)最后一項(xiàng)的分母即左側(cè)的項(xiàng)數(shù)即可得出答案.

解答 解:當(dāng)n=k時(shí),不等式左側(cè)為1+$\frac{1}{2}+\frac{1}{3}$+…+$\frac{1}{{2}^{k}-1}$,
當(dāng)n=k+1時(shí),不等式左側(cè)為1+$\frac{1}{2}+\frac{1}{3}$+…$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$,
∴不等式左邊增加的項(xiàng)數(shù)是(2k+1-1)-(2k-1)=2k
故選:D.

點(diǎn)評(píng) 本題考查了數(shù)學(xué)歸納法的證明,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點(diǎn)A(3,4),
(1)經(jīng)過點(diǎn)A,且在兩坐標(biāo)軸上截距相等的直線方程為4x-3y=0或x+y-7=0;
(2)經(jīng)過點(diǎn)A,且與兩坐標(biāo)軸圍成一個(gè)等腰直角三角形的直線方程為x-y+1=0或x+y-7=0;
(3)經(jīng)過點(diǎn)A,且在x軸上的截距是在y軸上的截距的2倍的直線方程為x+2y-11=0或4x-3y=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.演繹推理“①三角函數(shù)是周期函數(shù);②y=tanx是三角函數(shù);③y=tanx是周期函數(shù)”中的小前提是( 。
A.B.C.D.①和②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.α為第三象限角,cos2α=-$\frac{3}{5}$,則sin2α=$\frac{4}{5}$,tan($\frac{π}{4}$+2α)=$-\frac{1}{7}$,在以sin2α為首項(xiàng),tan($\frac{π}{4}$+2α)為公差的等差數(shù)列{an}中,其前n項(xiàng)和達(dá)到最大時(shí)n=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)化簡(jiǎn)$\frac{{cos(α-\frac{π}{2})}}{{sin(\frac{5π}{2}+α)}}$•sin(α-2π)•cos(2π-α)
(2)求值sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知M為不等式組$\left\{\begin{array}{l}{y≤{x}^{2}}\\{1≤x≤2}\\{y≥0}\end{array}\right.$表示的平面區(qū)域,直線l:y=2x+a,當(dāng)a從-2連續(xù)變化到0時(shí),區(qū)域M被直線掃過的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.圓與兩平行線x+3y-5=0,x+3y-3=0相切,圓心在直線2x+y+1=0,則這個(gè)圓的方程為${({x+\frac{7}{5}})^2}+{({y-\frac{9}{5}})^2}=\frac{1}{10}$ (化標(biāo)準(zhǔn)式).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知An4=24Cn6,且(2x-3)n=a0+a1(x-1)+a2(x-1)2+…+an(x-1)n,則n=10,a1+a2+a3+…+an=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)點(diǎn)M(x,y)在|x|≤1,|y|≤1時(shí)按均勻分布出現(xiàn),試求滿足:
(1)x+y≥0的概率;   
(2)x+y<1的概率;   
(3)x2+y2≥1的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案