【題目】設(shè)函數(shù), ,其中是實(shí)數(shù).
(1)解關(guān)于的不等式.
(2)若,求關(guān)于的方程實(shí)根的個數(shù).
【答案】(1)或;(2)見解析
【解析】試題分析:(1)對函數(shù)的兩個零點(diǎn)大小進(jìn)行討論,即, 和三種情形進(jìn)行討論,可得不等式的解;(2)對的值分成兩大類和,而在后一種當(dāng)中又分為, , 且和四種結(jié)果可得最后結(jié)果.
試題解析:(1),
當(dāng),即或時,不等式的解為或;
當(dāng),即或時,不等式的解為;
當(dāng),即,不等式的解為或,
綜上知, 或時,不等式的解集為或;
或時,不等式的解集為;
時,不等式的解集為或.
()由方程得, .
當(dāng)時,由①得,所以原方程有唯一解,
當(dāng)時,由①得判別式,
)時, ,方程①有兩個相等的根,
所以原方程有唯一的解.
)時, ,方程①有兩個相等的根,
所以原方程有唯一的解.
)且時,方程①整理為,
解得, .
由于,所以,其中, ,
即,故原方程有兩解.
)時,由)知,即,
故不是原方程的解,而,故原方程有唯一解.
綜上所述:當(dāng)或或時,原方程唯一解.
當(dāng)且且時,原方程有兩解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和為,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足:
對于任意,都有成立.
①求數(shù)列的通項(xiàng)公式;
②設(shè)數(shù)列,問:數(shù)列中是否存在三項(xiàng),使得它們構(gòu)成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)的直線與圓相切,且與直線垂直,則( )
A. 2 B. 1 C. D.
【答案】A
【解析】因?yàn)辄c(diǎn)P(2,2)滿足圓的方程,所以P在圓上,
又過點(diǎn)P(2,2)的直線與圓相切,且與直線axy+1=0垂直,
所以切點(diǎn)與圓心連線與直線axy+1=0平行,
所以直線axy+1=0的斜率為: .
故選A.
點(diǎn)睛:對于直線和圓的位置關(guān)系的問題,可用“代數(shù)法”或“幾何法”求解,直線與圓的位置關(guān)系體現(xiàn)了圓的幾何性質(zhì)和代數(shù)方法的結(jié)合,“代數(shù)法”與“幾何法”是從不同的方面和思路來判斷的,解題時不要單純依靠代數(shù)計(jì)算,若選用幾何法可使得解題過程既簡單又不容易出錯.
【題型】單選題
【結(jié)束】
23
【題目】設(shè)分別是雙曲線的左、右焦點(diǎn).若點(diǎn)在雙曲線上,且,則 ( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了節(jié)約生活用電,計(jì)劃在本市試行居民生活用電定額管理,即確定一個居民月用電量標(biāo)準(zhǔn),用電量不超過的部分按平價收費(fèi),超出的部分按議價收費(fèi).為此,政府調(diào)查了100戶居民的月平均用電量(單位:度),以, , , , , , 分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)如果當(dāng)?shù)卣M?/span>左右的居民每月的用電量不超出標(biāo)準(zhǔn),根據(jù)樣本估計(jì)總體的思想,你認(rèn)為月用電量標(biāo)準(zhǔn)應(yīng)該定為多少合理?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,底面為正三角形, 底面,且, 是的中點(diǎn).
(1)求證: 平面;
(2)求證:平面平面;
(3)在側(cè)棱上是否存在一點(diǎn),使得三棱錐的體積是?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若平面點(diǎn)集滿足:任意點(diǎn),存在,都有,則稱該點(diǎn)集是“階聚合”點(diǎn)集,F(xiàn)有四個命題:
①若,則存在正數(shù),使得是“階聚合”點(diǎn)集;
②若,則是“階聚合”點(diǎn)集;
③若,則是“2階聚合”點(diǎn)集;
④若是“階聚合”點(diǎn)集,則的取值范圍是.
其中正確命題的序號為( )
A. ①④ B. ②③ C. ①② D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中, 底面, , , , 是棱上一點(diǎn).
(I)求證: .
(II)若, 分別是, 的中點(diǎn),求證: 平面.
(III)若二面角的大小為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形與梯形全等, , , , , , 為中點(diǎn).
(Ⅰ)證明: 平面
(Ⅱ)點(diǎn)在線段上(端點(diǎn)除外),且與平面所成角的正弦值為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com