求證:a2+b2+c2+d2≥ab+bc+cd+da.
考點(diǎn):不等式的證明
專題:推理和證明
分析:直接利用重要不等式a2+b2≥2ab,以及字母變換形式,利用綜合法直接證明即可.
解答: 證明:∵a2+b2≥2ab,
b2+c2≥2bc,
c2+d2≥2cd,
d2+a2≥2da,
以上不等式相加即得a2+b2+c2+d2≥ab+bc+cd+da,
當(dāng)且僅當(dāng)a=b=c=d時(shí)取等號(hào).
∴a2+b2+c2+d2≥ab+bc+cd+da.
點(diǎn)評(píng):本題考查綜合法證明不等式的方法,重要不等式的應(yīng)用,本題也可以利用作差法等方法證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是( 。
A、命題“?x0∈R,x02+x0+1<0”的否定是:“?x∈R,x2+x+1>0”
B、“x=-1”是“x2-5x-6=0”的必要不充分條件
C、命題“若x2=1,則x=1”的否命題是:若x2=1,則x≠1
D、命題“若x=y,則sin x=sin y”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z1=x2+
x2+1
i,z2=(x2+a)i,對(duì)于任意x∈R,均有|z1|>|z2|成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人在靜水中游泳,速度為4
3
公里/小時(shí),他在水流速度為4公里/小時(shí)的河中游泳.
(1)若他垂直游向河對(duì)岸,則他實(shí)際沿什么方向前進(jìn)?實(shí)際前進(jìn)的速度為多少?
(2)他必須朝哪個(gè)方向游,才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
3x-2,x≥2
-2,x<2
的值的程序框圖如圖所示.
(1)指出程序框圖中的錯(cuò)誤之處并重新繪制解決該問(wèn)題的程序框圖;
(2)寫(xiě)出對(duì)應(yīng)程序語(yǔ)句,且回答下面提出的問(wèn)題:
問(wèn)題1,要使輸出的值為7,輸入的x的值應(yīng)為多少?
問(wèn)題2,要使輸出的值為正數(shù),輸入的x應(yīng)滿足什么條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)給定三個(gè)向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).
(1)若(
a
+k
c
)⊥(2
b
-
a
),求實(shí)數(shù)k;
(2)若向量
d
滿足
d
c
,且|
d
|=
34
,求向量
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x2-x-6)的定義域?yàn)锳,函數(shù)g(x)=x2-2x在區(qū)間[-1,4]上的值域?yàn)锽,求A∪B及(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x2013+ax3-
b
x
-8,f(-2)=10,求f(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0),點(diǎn)A(2,3)在橢圓C1上,過(guò)點(diǎn)A的直線L與拋物線C2:x2=4y交于不同兩點(diǎn)B,C,拋物線C2在點(diǎn)B,C處的切線分別為l1,l2,且l1與l2交于點(diǎn)P.
(1)求橢圓C1的方程;
(2)是否存在滿足(|
PF1
|-|
AF1
|)+(|
PF2
|-|
AF2
|)=0的點(diǎn)P?若存在,指出這樣的點(diǎn)P有幾個(gè),并求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案