9.已知△ABC的外接圓半徑為1,圓心為O,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,則∠AOB的大小是$\frac{π}{2}$.

分析 移項得3$\overrightarrow{OA}$+4$\overrightarrow{OB}$=-5$\overrightarrow{OC}$,兩邊平方即可得出$\overrightarrow{OA}•\overrightarrow{OB}$=0,于是OA⊥OB.

解答 解:∵3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,∴3$\overrightarrow{OA}$+4$\overrightarrow{OB}$=-5$\overrightarrow{OC}$,
∴9${\overrightarrow{OA}}^{2}$+16${\overrightarrow{OB}}^{2}$+24$\overrightarrow{OA}•\overrightarrow{OB}$=25${\overrightarrow{OC}}^{2}$,
∵|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,∴25+24$\overrightarrow{OA}•\overrightarrow{OB}$=25,∴$\overrightarrow{OA}•\overrightarrow{OB}$=0,
∴$\overrightarrow{OA}⊥\overrightarrow{OB}$,∴∠AOB=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.

點評 本題考查了平面向量的數(shù)量積運算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知0<α<$\frac{π}{2}$<β<π,sinα=$\frac{4}{5}$,cos(α-β)=$\frac{\sqrt{2}}{10}$,則β的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知某城市2015年底的人口總數(shù)為200萬,假設(shè)此后該城市人口的年增長率為1%(不考慮其他因素).
(1)若經(jīng)過x年該城市人口總數(shù)為y萬,試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)如果該城市人口總數(shù)達(dá)到210萬,那么至少需要經(jīng)過多少年(精確到1年)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=$\frac{x+2}{2x+1}$的反函數(shù)為y=f-1(x),則f-1(2)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a12+b12≠0,a22+b22≠0,則“$|{\begin{array}{l}{a_1}&{b_1}\\{{a_2}}&{b_2}\end{array}}$|=0”是“直線l1:a1x+b1y+c1=0與l2:a2x+b2y+c2=0”平行的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=sin2$\frac{ωx}{2}$+$\frac{1}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R,若f(x)在區(qū)間(π,2π)內(nèi)沒有零點,則ω的取值范圍是( 。
A.(0,$\frac{1}{8}$]B.(0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1)C.(0,$\frac{5}{8}$]D.(0,$\frac{1}{8}$]∪[$\frac{1}{4}$,$\frac{5}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若拋物線y2=4x上的點M到焦點的距離為10,則M到y(tǒng)軸的距離是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C:x2+y2-2x-2y+m=0與兩坐標(biāo)軸都相切,點P在直線l:3x-4y+11=0上,過點P的直線PA,PB與圓C相切于A,B兩點.
(1)求四邊形PACB面積的最小值;
(2)直線l上是否存在點P,使得∠APB=90°?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x-$\frac{a}{x}$的定義域為(0,1](a∈R).
(1)若a=1,求f(x)的最大值;
(2)若函數(shù)f(x)是定義域上的減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案