17.函數(shù)f(x)=$\frac{x+2}{2x+1}$的反函數(shù)為y=f-1(x),則f-1(2)=0.

分析 由2=$\frac{x+2}{2x+1}$,解出即可得出.

解答 解:由2=$\frac{x+2}{2x+1}$,化為x=0,
∴f-1(2)=0.
故答案為:0.

點(diǎn)評 本題考查了互為反函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.據(jù)報(bào)載,中美洲地區(qū)毀林嚴(yán)重.據(jù)統(tǒng)計(jì),在20世紀(jì)80年代末,每時(shí)平均毀林約48hm2,森林面積每年以3.6%~3.9%的速度減少,迄今被毀面積已達(dá)1.3×107hm2,目前還剩1.9×107hm2.請你回答以下幾個(gè)問題:
(1)如果以每時(shí)平均毀林約48hm2計(jì)算,剩下的森林經(jīng)過多少年將被毀盡?
(1)根據(jù)(1)計(jì)算出的年數(shù)n,如果以每年3.6%~3.9%的速度減少,計(jì)算n年后的毀林情況;
(3)若按3.6%的速度減少,估算經(jīng)過150年后,經(jīng)過200年后,經(jīng)過250年后及經(jīng)過300年后森林面積的情況,經(jīng)過多少年森林將被毀盡?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)y=2cosx的圖象與y=3tanx的圖象交于點(diǎn)P,過點(diǎn)P作x軸的垂線,垂足為P1,直線PP1與函數(shù)y=sinx的圖象交于點(diǎn)P2,則線段P1P2的長為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知四個(gè)點(diǎn)A,B,C,D滿足$\overrightarrow{AC}$•$\overrightarrow{BD}$=1,$\overrightarrow{AB}$•$\overrightarrow{DC}$=2,則$\overrightarrow{AD}$•$\overrightarrow{BC}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知f(x)=sin2x+$\sqrt{3}$cos2x,則f($\frac{π}{6}$)=$\sqrt{3}$;若f(x)=-2,則滿足條件的x的集合為$\{x|x=kπ-\frac{5}{12}π\(zhòng);,k∈Z\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=ax2+bx,且1≤f(1)≤2,2≤f(-2)≤4.向量$\overrightarrow m$=(a,b),$\overrightarrow n$=(0,2),則|$\overrightarrow m$-$\overrightarrow n$|的取值范圍為$[\sqrt{2},\sqrt{5}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知△ABC的外接圓半徑為1,圓心為O,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$,則∠AOB的大小是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a≥3,函數(shù)F(x)=min{2|x-1|,x2-2ax+4a-2},其中min(p,q)=$\left\{\begin{array}{l}{p,p≤q}\\{q,p>q}\end{array}\right.$
(Ⅰ)求使得等式F(x)=x2-2ax+4a-2成立的x的取值范圍
(Ⅱ)(i)求F(x)的最小值m(a)
(ii)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4=6,S8=10,求$\frac{{S}_{16}}{{S}_{12}}$.

查看答案和解析>>

同步練習(xí)冊答案