A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{2-\sqrt{2}}{2}$ | D. | 2-$\sqrt{2}$ |
分析 利用已知條件求出P的坐標(biāo),代入橢圓方程,化簡求解即可.
解答 解:直線y=x與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個交點為P,橢圓的左、右焦點分別為F1、F2,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
不妨設(shè)P(x,x),x>0可得:$\sqrt{2}x$=c,
則P$(\frac{\sqrt{2}}{2}c,\frac{\sqrt{2}}{2}c)$,代入橢圓方程可得:$\frac{{(\frac{\sqrt{2}}{2}c)}^{2}}{{a}^{2}}+\frac{{(\frac{\sqrt{2}}{2}c)}^{2}}{^{2}}=1$,
即$\frac{1}{2}$e2+$\frac{1}{2}$•$\frac{{c}^{2}}{^{2}}$=1.
即${e}^{2}+\frac{{c}^{2}}{^{2}}=2$
可得${e}^{2}+\frac{{c}^{2}}{{a}^{2}-{c}^{2}}=2$.
${e}^{2}+\frac{{e}^{2}}{1-{e}^{2}}=2$,
解得:e2=2-$\sqrt{2}$.
故選:D.
點評 本題考查橢圓的離心率的求法,橢圓與向量的關(guān)系,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 12π | D. | 15π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | $\frac{80}{3}$ | C. | $\frac{10}{3}$ | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com