7.函數(shù)y=(x-1)2(x≥1)的反函數(shù)y=1+$\sqrt{x}$(x≥0).

分析 由y=(x-1)2(x≥1),解得x=1+$\sqrt{y}$,把x與y互換即可得出.

解答 解:由y=(x-1)2(x≥1),解得x=1+$\sqrt{y}$,把x與y互換可得:y=1+$\sqrt{x}$(x≥0).
∴原函數(shù)的反函數(shù)為:y=1+$\sqrt{x}$(x≥0).
故答案為:y=1+$\sqrt{x}$(x≥0).

點評 本題考查了反函數(shù)的求法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+\frac{1}{x}+a,x>0}\\{{2^x}+a,x≤0}\end{array}}\right.$,若方程f(x)=-x有且僅有一解,則實數(shù)a的取值范圍為a≥-1或a=-2$\sqrt{2}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}中a1=1,an+1=an+2n(n∈N*)求其通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=2x2+4x+1(x≤-2)的反函數(shù)是y=-1-$\sqrt{\frac{x+1}{2}}$,(x≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.方程lgx=-x2+18x-80的解的個數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{|{x}^{2}+4x+3|,x≤0}\end{array}\right.$若關(guān)于x的方程f2(x)+bf(x)+4=0有8個不同的實數(shù)根,則實數(shù)b的取值范圍是(  )
A.[-$\frac{17}{4}$,-4)∪{-5}B.[-$\frac{13}{3}$,-4)∪{-5}C.[-5,-$\frac{13}{3}$]D.[-5,-4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)點P是曲線y=ex-$\sqrt{3}$x+$\frac{2}{3}$上的任意一點,P點處的切線的傾斜角為α,則角α的取值范圍是( 。
A.[$\frac{2}{3}π,π$)B.[0,$\frac{π}{2}$)∪($\frac{2}{3}π,π$)C.[0,$\frac{π}{2}$)∪[$\frac{5π}{6}$,π)D.[$\frac{π}{2}$,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義在R上的函數(shù)f(x)=2cosωxsin($ωx+\frac{π}{6}$)-$\frac{1}{2}$(ω>0)的周期為π.
(1)求ω的值及f(x)的單調(diào)增區(qū)間;
(2)記g(x)=f(x)+sin(x-$\frac{π}{6}$),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{2}{x}-2,x≥1}\\{lo{g}_{3}({x}^{2}+1),x<1}\end{array}\right.$,則$f(f(-\sqrt{2}))$=1;f(x)的最小值為0.

查看答案和解析>>

同步練習(xí)冊答案