A. | a<-2,或a>7 | B. | -2<a<7 | C. | -7<a<2 | D. | a=-2,或a=7 |
分析 點(diǎn)A(2,0),B(-1,3)在直線l:x-2y+a=0的兩側(cè),那么把這兩個(gè)點(diǎn)代入x-2y+a,它們的符號(hào)相反,乘積小于0,即可求出a的取值范圍.
解答 解:∵點(diǎn)A(2,0),B(-1,3)在直線l:x-2y+a=0的兩側(cè),
∴(2+a)(-1-6+a)<0,
即:(a+2)(a-7)<0,解得-2<a<7.
故選:B.
點(diǎn)評(píng) 本題考查二元一次不等式組與平面區(qū)域問題,是基礎(chǔ)題.準(zhǔn)確把握點(diǎn)與直線的位置關(guān)系,找到圖中的“界”,是解決此類問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 如果m?α,n?α,m、n是異面直線,那么n∥α | |
B. | 如果m?α,n與α相交,那么m、n是異面直線 | |
C. | 如果m?α,n∥α,m、n共面,那么m∥n | |
D. | 如果m∥α,n∥α,m、n共面,那么m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題p:“?x0∈R,$x_0^2-2{x_0}+1<0$”,則命題?p:?x∈R,x2-2x+1>0 | |
B. | “l(fā)na>lnb”是“2a>2b”的充要條件 | |
C. | 命題“若x2=2,則$x=\sqrt{2}$或$x=-\sqrt{2}$”的逆否命題是“若$x≠\sqrt{2}$或$x≠-\sqrt{2}$,則x2≠2” | |
D. | 命題p:?x0∈R,1-x0<lnx0;命題q:對(duì)?x∈R,總有2x>0;則p∧q是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n<10 | B. | n≤10 | C. | n≤1024 | D. | n<1024 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com