【題目】某種植基地將編號(hào)分別為1,2,3,4,5,6的六個(gè)不同品種的馬鈴薯種在如圖所示的
A | B | C | D | E | F |
這六塊實(shí)驗(yàn)田上進(jìn)行對(duì)比試驗(yàn),要求這六塊實(shí)驗(yàn)田分別種植不同品種的馬鈴薯,若種植時(shí)要求編號(hào)1,3,5的三個(gè)品種的馬鈴薯中至少有兩個(gè)相鄰,且2號(hào)品種的馬鈴薯不能種植在A、F這兩塊實(shí)驗(yàn)田上,則不同的種植方法有 ( )
A. 360種 B. 432種 C. 456種 D. 480種
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a為實(shí)數(shù),函數(shù)f(x)=(x﹣a)2+|x﹣a|﹣a(a﹣1).
(1)若f(0)≤1,求a的取值范圍;
(2)求f(x)在R上的單調(diào)區(qū)間(無(wú)需使用定義嚴(yán)格證明,但必須有一定的推理過(guò)程);
(3)當(dāng)a>2時(shí),求函數(shù)g(x)=f(x)+|x|在R上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+1|+|x|(x∈R)的最小值為a.
(1)求a;
(2)已知兩個(gè)正數(shù)m,n滿足m2+n2=a,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=log3x.
(1)求f(45)﹣f(5)的值;
(2)若函數(shù)y=g(x)(x∈R)是奇函數(shù),當(dāng)x>0時(shí),g(x)=f(x),求函數(shù) y=g(x)的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為[5,15],(15,25],(25,35],(35,45],由此得到樣本的重量頻率分布直方圖(如圖).
(1)求的值;
(2)從盒子中隨機(jī)抽取3個(gè)小球,其中重量在[5,15]內(nèi)的小球個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望. (以直方圖中的頻率作為概率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某影院為了宣傳影片《戰(zhàn)狼Ⅱ》,準(zhǔn)備采用以下幾種方式來(lái)擴(kuò)大影響,吸引市民到影院觀看影片,根據(jù)以往經(jīng)驗(yàn),預(yù)測(cè):
①分發(fā)宣傳單需要費(fèi)用1.5萬(wàn)元,可吸引30%的市民,增加收入4萬(wàn)元;
②網(wǎng)絡(luò)上宣傳,需要費(fèi)用8千元,可吸引20%的市民,增加收入3萬(wàn)元;
③制作小視頻上傳微信群,需要費(fèi)用2.5萬(wàn)元,可吸引35%的市民,增加收入5.5萬(wàn)元;
④與商場(chǎng)合作需要費(fèi)用1萬(wàn)元,購(gòu)物滿800元者可免費(fèi)觀看影片(商場(chǎng)購(gòu)票),可吸收15%的市民,增加收入2.5萬(wàn)元,
問(wèn): (1)在三個(gè)觀看影片的市民中,至少有一個(gè)是通過(guò)微信群宣傳方式吸引來(lái)的概率是多少?
(2)影院預(yù)計(jì)可增加盈利是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx+ .
(1)若a=1,求f(x)在x∈[1,3]的最值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)若存在x0∈[1,e],使得f(x0)<0成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記等差數(shù)列的前項(xiàng)和為.
(1)求證:數(shù)列是等差數(shù)列;
(2)若 ,對(duì)任意,均有是公差為的等差數(shù)列,求使為整數(shù)的正整數(shù)的取值集合;
(3)記,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱柱ABCD﹣A1B1C1D1的三視圖如圖所示,則異面直線D1C與AC1所成的角為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com