14.如圖,在四棱錐ABCD中,點(diǎn)E、F、G分別為棱BC、BD、CD的中點(diǎn),且AB=AG,BC=BD.
(1)求證:CD∥平面AEF;
(2)求證:平面AEF⊥平面BCD.

分析 (1)根據(jù)線面平行的判定定理證明EF∥CD即可證明CD∥平面AEF;
(2)根據(jù)面面垂直的判定定理即可證明平面AEF⊥平面BCD.

解答 證明:(1)∵E、F、G分別為棱BC、BD、CD的中點(diǎn),
∴EF∥CD,
∵CD?平面AEF,EF?平面AEF,
∴CD∥平面AEF;
(2)連結(jié)BG,交EF于O,連結(jié)AO,
∵AB=AG,BC=BD,
∴AO⊥BG,BG⊥CD,BG⊥EF.
BG⊥平面AEF,
∵BG?平面BCD,
∴平面AEF⊥平面BCD.

點(diǎn)評(píng) 本題主要考查空間直線和平面平行以及平面和平面垂直的判定,要求熟練掌握相應(yīng)的判定定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(4-m)-f(m)≥8-4m.則實(shí)數(shù)m的取值范圍為(  )
A.[-2,2]B.[2,+∞)C.[0,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x3-3x2+ax(a∈R)
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)a≥2時(shí),求函數(shù)y=|f(x)|在0≤x≤1上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知tanx=-1,求滿足下列條件的x值:
(1)x∈R;
(2)x∈(-$\frac{π}{2}$,$\frac{π}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)等差數(shù)列{an}的公差為d(d∈N*),等比數(shù)列{bn}的公比為q,若a2,a3,a5分別為{bn}的前三項(xiàng),且d<q.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若數(shù)列{cn}滿足:b1c1+b2c2+…+bncn=an,求數(shù)列{cnan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖是某直三棱柱(側(cè)棱與底面垂直的三棱柱)被削去上底后的直觀圖與三視圖中的側(cè)視圖、俯視圖,在直觀圖中,M是BD的中點(diǎn),側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)若N是BC的中點(diǎn),求證:AN∥平面CME;
(2)求證:平面BDE⊥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,平面PAC⊥平面ABC,AC⊥BC,△PAC為等邊三角形,PE∥CB,M,N分別是線段AE,AP上的動(dòng)點(diǎn),且滿足:$\frac{AM}{AE}$=$\frac{AN}{AP}$=λ(0<λ<1).
(1)求證:MN∥平面ABC;
(2)當(dāng)λ=$\frac{1}{2}$時(shí),求證:面CMN⊥面APE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=|x2-2x-3|,x∈R.
(1)直線y=m與y=f(x)的圖象從左到右依次有4個(gè)交點(diǎn)A、B、C、D,若線段AB、BC、CD能構(gòu)成三角形,求m的取值范圍;
(2)當(dāng)函數(shù)f(x)的定義域?yàn)閇a,b]時(shí),值域恰好為[$\frac{5}{3}$(a-1),$\frac{5}{3}$(b-1)],求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.f(x)=xsinx-cosx,f′(π)=-π.

查看答案和解析>>

同步練習(xí)冊(cè)答案