【題目】從1到9這9個數(shù)字中取3個偶數(shù)和4個奇數(shù),試問:
(1)能組成多少個沒有重復(fù)數(shù)字的七位數(shù)?
(2)在(1)中的七位數(shù)中,偶數(shù)排在一起,奇數(shù)也排在一起的有多少個?
(3)在(1)中任意2個偶數(shù)都不相鄰的七位數(shù)有多少個?
【答案】(1)100800;(2)5760;(3)28800
【解析】
(1)分三步完成即得符合題意的七位數(shù)有.(2)利用捆綁法求出總數(shù).(3)利用插空法求得共有多少個七位數(shù).
(1)分步完成:
第一步,在4個偶數(shù)中取3個,有種情況.
第二步,在5個奇數(shù)中取4個,有種情況.
第三步,將3個偶數(shù)、4個奇數(shù)進(jìn)行排列,有種情況.
所以符合題意的七位數(shù)有=100800(個).
(2)在(1)中的七位數(shù)中,3個偶數(shù)排在一起,4個奇數(shù)也排在一起的有=5760(個).
(3)在(1)中的七位數(shù)中,偶數(shù)都不相鄰,可先把4個奇數(shù)排好,再將3個偶數(shù)分別插入5個空位(包括兩端)中,共有=28800(個).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了調(diào)研學(xué)生的數(shù)學(xué)成績和物理成績是否有關(guān)系,隨機(jī)抽取了189名學(xué)生進(jìn)行調(diào)查,調(diào)查結(jié)果如下:在數(shù)學(xué)成績較好的94名學(xué)生中,有54名學(xué)生的物理成績較好,有40名學(xué)生的物理成績較差;在成績較差的95名學(xué)生中,有32名學(xué)生的物理成績較好,有63名學(xué)生的物理成績較差.根據(jù)以上的調(diào)查結(jié)果,利用獨(dú)立性檢驗(yàn)的方法可知,約有________的把握認(rèn)為“學(xué)生的數(shù)學(xué)成績和物理成績有關(guān)系”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導(dǎo)函數(shù)),若方程g(f(x))=0有四個不等的實(shí)根,則a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù))以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 .若直線l與曲線C交于A,B,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校共有學(xué)生15 000人,其中男生10 500人,女生4500人.為調(diào)查該校學(xué)生每周平均體育運(yùn)動時間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時間(單位:h)的樣本數(shù)據(jù).
(1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?
(2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估計(jì)該校學(xué)生每周平均體育運(yùn)動時間超過4 h的概率.
(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時間超過4 h,請完成下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“該校學(xué)生的每周平均體育運(yùn)動時間與性別有關(guān)”?
男生 | 女生 | 總計(jì) | |
每周平均體育運(yùn)動時間不超過4h | |||
每周平均體育運(yùn)動時間超過4h | |||
總計(jì) |
附:
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD為菱形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點(diǎn).
(1)證明:AE⊥PD;
(2)若AB=2,PA=2,求二面角E-AF-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:,q:.
(1)若p是q充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)若“非p”是“非q”的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3-3mx+n(m>0)的極大值為6,極小值為2.
(1)求實(shí)數(shù)m,n的值;
(2)求f(x)在區(qū)間[0,3]上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com