5.函數(shù)y=$\frac{lg(2-x)}{\sqrt{12+x-{x}^{2}}}$+(x-1)-1的定義域是(-3,1)∪(1,2).

分析 根據(jù)使函數(shù)解析式有意義的原則,構(gòu)造不等式組,解得函數(shù)的定義域.

解答 解:由$\left\{\begin{array}{l}2-x>0\\ 12+x-{x}^{2}>0\\ x-1≠0\end{array}\right.$得:
x∈(-3,1)∪(1,2),
故函數(shù)y=$\frac{lg(2-x)}{\sqrt{12+x-{x}^{2}}}$+(x-1)-1的定義域是(-3,1)∪(1,2),
故答案為:(-3,1)∪(1,2)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的定義域及其求法,根據(jù)已知構(gòu)造不等式組,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程y=$\sqrt{2}$x,原點(diǎn)到過A(a,0)、B(0,-b)點(diǎn)直線l的距離為$\frac{\sqrt{6}}{3}$.
(1)求雙曲線方程;
(2)過點(diǎn)Q(1,1)能否作直線m,使m與已知雙曲線交于兩點(diǎn)P1,P2,且Q是線段P1P2的中點(diǎn)?若存在,請(qǐng)求出其方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某商品的價(jià)格為80元時(shí),月銷售量為10000件,若價(jià)格每降低2元.需要量就會(huì)增加1000件,如果不考慮其他因素:(1)試求這商品的月銷售量與價(jià)格之間的函數(shù)關(guān)系式;
(2)若這種商品的進(jìn)貨價(jià)是每件40元,銷售價(jià)為多少元時(shí),月利潤(rùn)收人最多.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)f(x)=4x+3,g(x)=x2,求滿足f[g(x)]=g[f(x)]的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)f(x),φ(x)在x=0某領(lǐng)域內(nèi)連續(xù),且當(dāng)x→0時(shí)f(x)是φ(x)高階無窮小,則當(dāng)x→0時(shí),${∫}_{0}^{x}$f(t)sintdt是${∫}_{0}^{x}$tφ(t)dt的( 。o窮。
A.低階B.高階C.同階但不等階D.等階

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,已知sinA=cosBcosC,則必有(  )
A.sinB+sinC為常數(shù)B.cosB+cosC為常數(shù)C.tanB+tanC為常數(shù)D.sinB+cosC為常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知tanα=2,且α是第三象限角,求sin(kπ-α)+cos(kπ+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,過正方體ABCD-A1B1C1D1的棱BB1的平面交DD1C1C于EE1.求證:BB1∥EE1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某化工廠打算投入一條新的生產(chǎn)線,但需要經(jīng)環(huán)保部門通過“可持續(xù)指數(shù)”來進(jìn)行積累考核.已知該生產(chǎn)線連續(xù)生產(chǎn)n年的產(chǎn)量f(n)=$\frac{n(n+1)(n+2)}{3}$噸,每年生產(chǎn)量an的倒數(shù)記作該年的“可持續(xù)指數(shù)”,如果累計(jì)“可持續(xù)指數(shù)”不小于80%,則生產(chǎn)必須停止,則該產(chǎn)品可持續(xù)生產(chǎn)3年.

查看答案和解析>>

同步練習(xí)冊(cè)答案