分析 該生產(chǎn)線連續(xù)生產(chǎn)n年的產(chǎn)量f(n)=$\frac{n(n+1)(n+2)}{3}$噸,可得a1=f(1),當(dāng)n≥2時,an=f(n)-f(n-1)=n(n+1),$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,利用“裂項求和”可得$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,即可得出.
解答 解:∵該生產(chǎn)線連續(xù)生產(chǎn)n年的產(chǎn)量f(n)=$\frac{n(n+1)(n+2)}{3}$噸,
∴a1=f(1)=2,
當(dāng)n≥2時,an=f(n)-f(n-1)=$\frac{n(n+1)(n+2)}{3}$-$\frac{(n-1)n(n+1)}{3}$=n(n+1),
∴$\frac{1}{{a}_{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$.
令1-$\frac{1}{n+1}$≥80%,
解得n≥4,
因此該產(chǎn)品可持續(xù)生產(chǎn)3年.
故答案為:3.
點評 本題考查了“裂項求和”、遞推關(guān)系的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com