如圖,四棱錐中,底面為平行四邊形,,,⊥底面.
(1)證明:平面平面;
(2)若二面角為,求與平面所成角的正弦值.
(1)證明過(guò)程詳見解析;(2).
解析試題分析:(1)可以遵循思路面面垂直線面垂直線線垂直,即證明面面垂直只需要證明其中一個(gè)面里面的一條直線垂直與另外一個(gè)面即可,即證明面PDB,線面垂直只需要證明BC與面內(nèi)相交的兩條直線垂直即可,即BD, PD,前者可有三角形的勾股定理證得,后者由線面垂直得到
(2)求線面夾角可以利用三維空間直角坐標(biāo)系,分別以DA,DB,PD三條兩兩垂直的直線建立坐標(biāo)系,求面法向量與直線的夾角的余弦值的絕對(duì)值即為線面夾角的余弦值.
試題解析:
(1)∵∴
又∵⊥底面∴
又∵∴平面
而平面 ∴平面平面 5分
(1)由(1)所證,平面 ,所以∠即為二面角P-BC-D的平面角,即∠
而,所以 7分
分別以、、為軸、軸、軸建立空間直角坐標(biāo)系.則,,, ,所以,,,,設(shè)平面的法向量為,則,即可解得∴與平面所成角的正弦值為 12分
考點(diǎn):面面垂直 線面夾角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱中,底面.四邊形為梯形,,且.過(guò)三點(diǎn)的平面記為,與的交點(diǎn)為.
(1)證明:為的中點(diǎn);
(2)求此四棱柱被平面所分成上下兩部分的體積之比;
(3)若,,梯形的面積為6,求平面與底面所成二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐的底面是平行四邊形,,,面,
且.若為中點(diǎn),為線段上的點(diǎn),且.
(1)求證:平面;
(2)求PC與平面PAD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知四棱錐的底面的菱形,,點(diǎn)是邊的中點(diǎn),交于點(diǎn),
(1)求證:;
(2)若的大;
(3)在(2)的條件下,求異面直線與所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直角梯形ABCP中,,D是AP的中點(diǎn),E,G分別為PC,CB的中點(diǎn),將三角形PCD沿CD折起,使得PD垂直平面ABCD.(1)若F是PD的中點(diǎn),求證:AP平面EFG;(2)當(dāng)二面角G-EF-D的大小為時(shí),求FG與平面PBC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,幾何體中,為邊長(zhǎng)為的正方形,為直角梯形,,,,,.
(1)求異面直線和所成角的大;
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知在四棱錐中,底面是矩形,平面,,,是的中點(diǎn),是線段上的點(diǎn).
(1)當(dāng)是的中點(diǎn)時(shí),求證:平面;
(2)要使二面角的大小為,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求證:AG平面BDE;
(2)求:二面角GDEB的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在多面體ABCD-A1B1C1D1中,上、下兩個(gè)底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.
(1)求異面直線AB1與DD1所成角的余弦值;
(2)已知F是AD的中點(diǎn),求證:FB1⊥平面BCC1B1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com