【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) 是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Tn .
【答案】解:(Ⅰ)依題意得 解得 ,
∴an=a1+(n﹣1)d=3+2(n﹣1)=2n+1,
即an=2n+1.
(Ⅱ) ,
bn=an3n﹣1=(2n+1)3n﹣1
Tn=3+53+732+…+(2n+1)3n﹣1
3Tn=33+532+733+…+(2n﹣1)3n﹣1+(2n+1)3n
﹣2Tn=3+23+232+…+23n﹣1﹣(2n+1)3n
∴Tn=n3n .
【解析】(I)將已知等式用等差數(shù)列{an}的首項(xiàng)、公差表示,列出方程組,求出首項(xiàng)、公差;利用等差數(shù)列的通項(xiàng)公式求出數(shù)列{an}的通項(xiàng)公式.(II)利用等比數(shù)列的通項(xiàng)公式求出 ,進(jìn)一步求出bn , 根據(jù)數(shù)列{bn}通項(xiàng)的特點(diǎn),選擇錯(cuò)位相減法求出數(shù)列{bn}的前n項(xiàng)和Tn .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長(zhǎng)度,直線的極坐標(biāo)方程為
(1)當(dāng)時(shí),判斷直線與圓的關(guān)系;
(2)當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A是函數(shù)y=lg(20﹣8x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.
(1)若A∩B=,求實(shí)數(shù)a的取值范圍;
(2)若¬p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),“共享單車(chē)”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車(chē)公司“Mobike”計(jì)劃在甲、乙兩座城市共投資120萬(wàn)元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資40萬(wàn)元,由前期市場(chǎng)調(diào)研可知:甲城市收益P與投入(單位:萬(wàn)元)滿足,乙城市收益Q與投入(單位:萬(wàn)元)滿足,設(shè)甲城市的投入為(單位:萬(wàn)元),兩個(gè)城市的總收益為(單位:萬(wàn)元).
(1)當(dāng)甲城市投資50萬(wàn)元時(shí),求此時(shí)公司總收益;
(2)試問(wèn)如何安排甲、乙兩個(gè)城市的投資,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校共有高一、高二、高三學(xué)生共有1290人,其中高一480人,高二比高三多30人.為了解該校學(xué)生健康狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有高一學(xué)生96人,則該樣本中的高三學(xué)生人數(shù)為 78 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有個(gè)小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個(gè)球,最多抓3個(gè)球,規(guī)定誰(shuí)抓到最后一個(gè)球誰(shuí)贏. 如果甲先抓,那么下列推斷正確的是( )
A. 若=4,則甲有必贏的策略 B. 若=6,則乙有必贏的策略
C. 若=9,則甲有必贏的策略 D. 若=11,則乙有必贏的策略
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)安排甲、乙、丙、丁、戊5名同學(xué)參加廈門(mén)市華僑博物院志愿者服務(wù)活動(dòng),每人從事禮儀、導(dǎo)游、翻譯、講解四項(xiàng)工作之一,每項(xiàng)工作至少有一人參加. 甲、乙不會(huì)導(dǎo)游但能從事其他三項(xiàng)工作,丙、丁、戊都能勝任四項(xiàng)工作,則不同安排方案的種數(shù)是____________.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的一段圖象如圖5所示:將的圖像向右平移個(gè)單位,可得到函數(shù)的圖象,且圖像關(guān)于原點(diǎn)對(duì)稱,
(1)求的值;
(2)求的最小值,并寫(xiě)出的表達(dá)式;
(3)若關(guān)于的函數(shù)在區(qū)間上最小值為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將邊長(zhǎng)為1的正方形沿對(duì)角線折起,使得平面平面,在折起后形成的三棱錐中,給出下列三種說(shuō)法:
①是等邊三角形;②;③三棱錐的體積是.
其中正確的序號(hào)是__________(寫(xiě)出所有正確說(shuō)法的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com