【題目】已知集合A是函數(shù)y=lg(20﹣8x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.
(1)若A∩B=,求實(shí)數(shù)a的取值范圍;
(2)若¬p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
【答案】(1)a≥11(2)0<a≤1
【解析】試題分析:(1)分別求函數(shù)的定義域和不等式()的解集化簡(jiǎn)集合A,由得到區(qū)間端點(diǎn)值之間的關(guān)系,解不等式組得到的取值范圍;(2)求出對(duì)應(yīng)的的取值范圍,由是的充分不必要條件得到對(duì)應(yīng)集合之間的關(guān)系,由區(qū)間端點(diǎn)值的關(guān)系列不等式組求解的范圍.
試題解析:(1)由題意得,或,若,則必須滿足,解得,∴的取值范圍為.
(2)易得或.∵是的充分不必要條件,
∴或是或的真子集,則,其中兩個(gè)等號(hào)不能同時(shí)成立,解得,∴a的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,在x軸的上方作半徑為1的圓Γ,與x軸相切于坐標(biāo)原點(diǎn)O.平行于x軸的直線l1與y軸交點(diǎn)的縱坐標(biāo)為-1,A(x,y)是圓Γ外一動(dòng)點(diǎn),A與圓Γ上的點(diǎn)的最小距離比A到l1的距離小1.
(Ⅰ)求動(dòng)點(diǎn)A的軌跡方程;
(Ⅱ)設(shè)l2是圓Γ平行于x軸的切線,試探究在y軸上是否存在一定點(diǎn)B,使得以AB為直徑的圓截直線l2所得的弦長(zhǎng)不變.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所著《周髀算經(jīng)》中用趙爽弦圖給出了勾股定理的絕妙證明,如圖是趙爽弦圖,圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色和黃色,若朱色的勾股形中較大的銳角α為 ,現(xiàn)向該趙爽弦圖中隨機(jī)地投擲一枚飛鏢,則飛鏢落在黃色的小正方形內(nèi)的概率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C1: 的離心率為 ,拋物線C2:x2=4y的焦點(diǎn)F是C1的一個(gè)頂點(diǎn).
(I)求橢圓C1的方程;
(II)過點(diǎn)F且斜率為k的直線l交橢圓C1于另一點(diǎn)D,交拋物線C2于A,B兩點(diǎn),線段DF的中點(diǎn)為M,直線OM交橢圓C1于P,Q兩點(diǎn),記直線OM的斜率為k'.
(i)求證:kk'=﹣ ;
(ii)△PDF的面積為S1 , △QAB的面積為是S2 , 若S1S2=λk2 , 求實(shí)數(shù)λ的最大值及取得最大值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系.
(1)寫出圓C的極坐標(biāo)方程及圓心C的極坐標(biāo);
(2)直線l的極坐標(biāo)方程為與圓C交于M,N兩點(diǎn),求△CMN的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x)滿足 , .
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時(shí),試比較 和ex﹣1+a哪個(gè)更靠近lnx,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣2|x﹣a|,a>0. (Ⅰ)當(dāng)a=1時(shí),求不等式f(x)>1的解集;
(Ⅱ)若f(x)的圖象與x軸圍成的三角形面積大于6,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) 是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若對(duì)定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)為“a距”增函數(shù).
(1)若,(0,),試判斷是否為“1距”增函數(shù),并說明理由;
(2)若,R是“a距”增函數(shù),求a的取值范圍;
(3)若,(﹣1,),其中kR,且為“2距”增函數(shù),求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com