9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一條漸近線方程為y=2x,則雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{5}$或$\frac{{\sqrt{5}}}{2}$D.2

分析 求出雙曲線的漸近線方程,可得b=2a,由a,b,c的關(guān)系和離心率公式,計(jì)算即可得到所求值.

解答 解:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線方程為y=±$\frac{a}$x,
由題意可得$\frac{a}$=2,即有b=2a,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,
可得e=$\frac{c}{a}$=$\sqrt{5}$,
故選:A.

點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知角α的終邊上的點(diǎn)P與A(a,b)關(guān)于x軸對稱(a≠0,b≠0),角β的終邊上的點(diǎn)Q與A關(guān)于直線y=x對稱,求$\frac{sin(π+α)}{sin(\frac{3π}{2}+β)}$-$\frac{sin(π-α)cos(-β)+1}{sin(\frac{7π}{2}+α)sinβ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=2sinωx(ω>0)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的周期T;
(2)求函數(shù)y=f(x)的解析式,并補(bǔ)充函數(shù)在區(qū)間[$\frac{π}{2}$,π]的圖象;
(3)判斷函數(shù)y=f(x)在區(qū)間[$\frac{3π}{4}$,π]上是增函數(shù)還是減函數(shù),并指出函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.與雙曲線$\frac{y^2}{4}-\frac{x^2}{3}=1$共同的漸近線,且過點(diǎn)(-3,2)的雙曲線的標(biāo)準(zhǔn)方程是(  )
A.$\frac{y^2}{8}-\frac{x^2}{6}=1$B.$\frac{x^2}{6}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{y^2}{9}-\frac{x^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知四棱錐P-ABCD的底面ABCD是邊長為2,銳角為60°的菱形,側(cè)棱PA⊥底面ABCD,PA=3,若點(diǎn)M是BC的中點(diǎn),則三棱錐M-PAD的體積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.經(jīng)過雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的左頂點(diǎn)、虛軸上端點(diǎn)、右焦點(diǎn)的圓的方程是x2+y2-2x+$\frac{1}{4}$y-15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)z=1+i(i是虛數(shù)單位),則$\frac{2}{z}$-z2的共軛復(fù)數(shù)是( 。
A.-1+3iB.1+3iC.1-3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過雙曲線${x}^{2}-\frac{{y}^{2}}{4}=1$的右焦點(diǎn)F作直線l交雙曲線于A?B兩點(diǎn),若|AB|=4,則這樣的直線有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的最大值為( 。
A.$\frac{5}{4}$B.$\frac{6}{5}$C.$\frac{5}{3}$D.$\frac{8}{5}$

查看答案和解析>>

同步練習(xí)冊答案