17.已知全集U=R,集合$A=\{\;x|\;{(\frac{1}{2})^x}≤1\;\}$,B={x|x2-6x+8≤0},則圖中陰影部分所表示的集合為( 。
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4}D.{x|0≤x<2或x>4}

分析 由圖象可知陰影部分對(duì)應(yīng)的集合為A∩(∁UB),然后根據(jù)集合的基本運(yùn)算求解即可.

解答 解:由Venn圖可知陰影部分對(duì)應(yīng)的集合為A∩(∁UB),
∵$A=\{\;x|\;{(\frac{1}{2})^x}≤1\;\}$={x|x≥0},B={x|x2-6x+8≤0}={x|2≤x≤4},
∴∁UB={x|x>4或x<2},
即A∩(∁UB)={x|0≤x<2或x>4},
故選:D.

點(diǎn)評(píng) 本題主要考查集合的基本運(yùn)算,利用圖象先確定集合關(guān)系是解決本題的關(guān)鍵,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知點(diǎn)A(x1,y1),B(x2,y2),M(1,0),$\overrightarrow{AB}$=(3λ,4λ)(λ≠0),$\overrightarrow{MA}$=-4$\overrightarrow{MB}$,若拋物線y2=ax經(jīng)過(guò)A和B兩點(diǎn),則a的值為( 。
A.2B.-2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若數(shù)列{an}為等差數(shù)列,且am=x,an=y(m≠n),則am+n=$\frac{mx-ny}{m-n}$.現(xiàn)已知數(shù)列{bn}是各項(xiàng)均大于0的等比數(shù)列,且bm=x,bn=y(m≠n),則類比等差數(shù)列,你能得到什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)$f(x)=\sqrt{3}sin2x+cos2x+3$.
(Ⅰ)求f(x)的最小正周期與單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,若$a=\sqrt{3}$,f(A)=4,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=sinx-2x在R上的單調(diào)性是單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.利用函數(shù)圖象,觀察并寫出下列極限:
(1)$\underset{lim}{x→∞}$$\frac{1}{x+1}$;
(2)$\underset{lim}{x→∞}$3x;
(3)$\underset{lim}{x→∞}$($\frac{1}{2}$)x;
(4)$\underset{lim}{x→0}$sinx;
(5)$\underset{lim}{x→\frac{π}{4}}$tanx;
(6)$\underset{lim}{x→1}$lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.“x+3=0”是“x2-9=0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知cosα+cosβ=$\frac{1}{2}$,則cos$\frac{α+β}{2}$cos$\frac{α-β}{2}$的值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知:|$\overrightarrow{a}$|=|$\overrightarrow$|.且$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,求$\overrightarrow{a}$$+\overrightarrow$與$\overrightarrow{a}$的夾角.

查看答案和解析>>

同步練習(xí)冊(cè)答案