若數(shù)列{an}是等差數(shù)列,a3,a10是方程x2-3x-5=0的兩根,則a5+a8=( 。
A、4B、2C、-3D、3
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)根與系數(shù)的關(guān)系得a3+a10=3,再根據(jù)數(shù)列{an}是等差數(shù)列得:a5+a8=a3+a10,求得即可
解答: 解:因a3,a10是方程x2-3x-5=0的兩根,
∴a3+a10=3,
又?jǐn)?shù)列{an}是等差數(shù)列,
a5+a8=a3+a10=3.
故選D.
點(diǎn)評:本題主要考查等差數(shù)列的性質(zhì),若m+n=p+q,則am+an=ap+aq
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三內(nèi)角A,B,C所對邊的長依次為a,b,c,M為該三角形所在平面內(nèi)的一點(diǎn),若a
MA
+b
MB
+c
MC
=
0
,則M是△ABC的(  )
A、內(nèi)心B、重心C、垂心D、外心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
k
x
,(k>0)的圖象如圖所示,
①指出函數(shù)f(x)的定義域,值域.
②指出函數(shù)f(x)的單調(diào)性.
③證明:當(dāng)k=1時,f(x)在(0,1)上是單調(diào)遞減的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2
1+x2

(1)求f(2)與f(
1
2
),f(3)與f(
1
3
)的值;
(2)由(1)中求得的結(jié)果,你能發(fā)現(xiàn)f(x)與f(
1
x
)有什么關(guān)系?證明你的發(fā)現(xiàn);
(3)求下列式子的值.f(0)+f(1)+f(2)+…+f(2013)+f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2013
)+f(
1
2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)y=
1
x
+x在區(qū)間[-2,-1)上的單調(diào)性,并用定義證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)F(x)=f(x)+x2為奇函數(shù),且g(x)=f(x)+2,若 f(1)=1,則g(-1)的值為( 。
A、1B、-3C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,a1=3,a3=9,若ak=243,則k等于( 。
A、79B、80C、81D、82

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若x∈A是x∈B的充分條件,求a的取值范圍;
(2)若A∩B=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+3mx2+nx+5m,在x=-1處有極值0;
(Ⅰ)求m,n的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案