分析 (I)利用等差數(shù)列的通項(xiàng)公式即可得出;
(II)由題意知,${b_n}={(-1)^n}{a_{\frac{n(n+1)}{2}}}={(-1)^n}[n(n+1)-1]$,再利用等差數(shù)列的前n項(xiàng)和公式即可得出.
解答 解:(I)設(shè)數(shù)列{an}的公差為d,
令n=1,得$\frac{1}{{{a_1}{a_2}}}=\frac{1}{3}$,所以a1a2=3.
令n=2,得$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}=\frac{2}{5}$,所以a2a3=15.
解得a1=1,d=2,所以an=2n-1.
(II)由題意知,${b_n}={(-1)^n}{a_{\frac{n(n+1)}{2}}}={(-1)^n}[n(n+1)-1]$,
所以${T_{2n}}=-(1•2-1)+(2•3-1)-(3•4-1)+…+{(-1)^{2n}}[2n(2n+2)-1]$
=[-(1•2-1)+(2•3-1)]+[-(3•4-1)+(4•5-1)…+{-[2(n-1)•2n-1]+[2n(2n+2)-1]}
=4+8…+4n=$\frac{n(4+4n)}{2}=2{n^2}+2n$.
點(diǎn)評(píng) 本題考查了數(shù)列an與Sn的關(guān)系、等差數(shù)列的通項(xiàng)公式、數(shù)列求和,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com