已知△ABC的三邊長(zhǎng)是三個(gè)連續(xù)的自然數(shù),且最大的內(nèi)角是最小內(nèi)角的2倍,則最小角的余弦值為( 。
A、
3
4
B、
5
6
C、
7
10
D、
2
3
考點(diǎn):余弦定理
專(zhuān)題:三角函數(shù)的求值
分析:設(shè)三邊依次是x-1,x,x+1,其中x是自然數(shù),且x≥2,令三角形的最小角為A,則最大角為2A,利用正弦定理列出關(guān)系式,再利用二倍角的正弦函數(shù)公式化簡(jiǎn)表示出cosA,再利用余弦定理表示出cosA,兩者相等求出x的值,確定出三邊長(zhǎng),即可求出最小值的余弦值.
解答: 解:設(shè)三邊依次是x-1,x,x+1,其中x是自然數(shù),且x≥2,
令三角形的最小角為A,則最大角為2A,
由正弦定理,有:
x-1
sinA
=
x+1
sin2A
=
x+1
2sinAcosA
,
∴cosA=
x+1
2(x-1)
,
由余弦定理,有:cosA=
x2+(x+1)2-(x-1)2
2x(x+1)
,
x+1
2(x-1)
=
x2+(x+1)2-(x-1)2
2x(x+1)
,即
x+1
x-1
=
x2+4x
x2+x
=
x+4
x+1
,
整理得:(x+1)2=(x-1)(x+4),
解得:x=5,
三邊長(zhǎng)為4,5,6,
則cosA=
52+62-42
2×5×6
=
3
4

故選:A.
點(diǎn)評(píng):此題考查了正弦、余弦定理,以及二倍角的正弦函數(shù)公式,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若某產(chǎn)品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差的絕對(duì)值不超過(guò)1mm時(shí),則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠(chǎng)生產(chǎn)的此種產(chǎn)品中;隨機(jī)抽取5000件進(jìn)行檢測(cè),結(jié)果發(fā)現(xiàn)有50件不合格品.計(jì)算這50件不合格品的直徑長(zhǎng)與標(biāo)準(zhǔn)值的差(單位mm),將所得數(shù)據(jù)分組,得到如下頻率分布表:
分組頻數(shù)頻率
[-3,-2)50.10
[-2,-1)80.16
(1,2]250.50
(2,3]100.20
(3,4]20.04
合計(jì)501.00
(Ⅰ)現(xiàn)對(duì)該廠(chǎng)這種產(chǎn)品的某個(gè)批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品,據(jù)此估算這批產(chǎn)品中的合格品的件數(shù);
(Ⅱ)用分層抽樣的方法從差的絕對(duì)值在[-2,-1)和(3,4]的產(chǎn)品中抽取5個(gè),求其中差的絕對(duì)值在[-2,-1)中的產(chǎn)品的個(gè)數(shù);
(Ⅲ)在(Ⅱ)中抽取的5個(gè)產(chǎn)品中任取2個(gè),差的絕對(duì)值在[-2,-1)和(3,4]中各有1個(gè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是:
(1)?x∈R使2x>3的否定是使?x∈R使2x≤3
(2)已知實(shí)數(shù)x、y滿(mǎn)足方程x2+y2-4x+1=0.則(x+3)2+(y+2)2最大值是32+2
87

(3)命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題
(4)函數(shù)y=sin(2x+
π
3
)sin(
π
6
-2x)
的最小正周期是π
(5)
3+i
1+i
化簡(jiǎn)結(jié)果為2+i.
以上說(shuō)法正確的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是( 。
A、-3
B、-
1
2
C、
1
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,正確的是( 。
A、“若xy=0,則x=0且y=0”的逆否命題
B、“若ac2>bc2則a>b”的逆命題
C、若“m>2,則不等式x2-2x+m>0的解集為R”
D、“正方形是菱形”的否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c的導(dǎo)數(shù)f′(x),f′(0)>0,且f(x)的值域?yàn)閇0,+∞),則
f(1)
f′(0)
的最小值為(  )
A、3
B、
5
2
C、2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義一個(gè)集合A的所有子集組成的集合叫做集合A的冪集,記為P(A),用n(A)表示有限集A的元素個(gè)數(shù),給出下列命題:
①對(duì)于任意集合A,都有A∈P(A);
②存在集合A,使得n[P(A)]=3;
③用∅表示空集,若A∩B=∅,則P(A)∩P(B)=∅;
④若A⊆B,則P(A)⊆P(B);
⑤若n(A)-n(B)=1,則n[P(A)]=2×n[P(B)].
其中正確的命題個(gè)數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-4x+1,求函數(shù)y=f[f(x)]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓C:x2+
y2
a2
=1(a>1)
 的離心率為e,點(diǎn)F為其下焦點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)F的直線(xiàn)l:y=mx-c(其中c=
a2-1
)與橢圓C相交于P,Q兩點(diǎn),且滿(mǎn)足:
OP
OQ
=
a2(c2-m2)-1
2-c2

(Ⅰ)試用a表示m2;
(Ⅱ)求e的最大值;
(Ⅲ)若 e∈(
1
3
,
1
2
)
,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案