17.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長為2,它的一個焦點恰好是拋物線y2=4x的焦點.
(1)求橢圓的方程;
(2)若上述橢圓的左焦點到直線y=x+m的距離等于$\sqrt{2}$,求該直線的方程.

分析 (1)由題意可得b=1,求得拋物線的焦點,可得c=1,由a=$\sqrt{^{2}+{c}^{2}}$,可得a,進(jìn)而得到橢圓方程;
(2)求得橢圓的左焦點,運用點到直線的距離公式,可得m,進(jìn)而得到直線方程.

解答 解:(1)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長為2,可得b=1,
由拋物線y2=4x的焦點(1,0),可得c=1,
則a=$\sqrt{^{2}+{c}^{2}}$=$\sqrt{2}$,
可得橢圓的方程為$\frac{{x}^{2}}{2}$+y2=1;
(2)由橢圓的左焦點(-1,0)到直線y=x+m的距離等于$\sqrt{2}$,
可得d=$\frac{|-1-0+m|}{\sqrt{2}}$=$\sqrt{2}$,
解得m=3或-1.
則所求直線方程為y=x+3或y=x-1.

點評 本題考查橢圓方程的求法,注意運用拋物線的焦點,考查點到直線的距離公式的運用,以及運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx+$\frac{x}$-a(x>0,a,b∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若?a∈[0,π],使得f(x)≥1+sina對任意x>0恒成立,求b的取值范圍;
(Ⅱ)當(dāng)b>0時,若函數(shù)f(x)有且僅有一個零點,設(shè)F(b)=$\frac{a-1}$-m(m∈R),且函數(shù)F(x)有兩個零點x1,x2,求實數(shù)m的取值范圍,并證明:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知如圖,四邊形ABCD是圓O的內(nèi)接四邊形,對角線AC,BD交于點E,直線AP是圓O的切線,切點為A,∠PAB=∠BAC.
(1)若BD=5,BE=2,求AB的長;
(2)在AD上取一點F,若∠FED=∠CED,求∠BAF+∠BEF的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.過點M(1,0)的直線交橢圓$\frac{{x}^{2}}{4}$+y2=1于A、B兩點,直線l:x=4與x軸交于點N,設(shè)點A關(guān)于x軸的對稱點為P(異于點B).
(Ⅰ)求證:P、B、N三點共線;
(Ⅱ)過點A作PB的平行線交直線l:x=4于點Q,記△AQM,△QMN,△BMN的面積分別為S1,S2,S3,求$\frac{{S}_{2}^{2}}{{S}_{1}{S}_{3}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,點P是∠BAC內(nèi)一點,且P到AB、AC的距離PE=PG,則下列哪一個能作為△PEA≌△PGA的理由(  )
A.HLB.AASC.SSSD.ASA

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ln(1+x)一$\frac{ax}{x+1}$(a>0).
(I)當(dāng)f(x)在[0,+∞)內(nèi)單調(diào)遞增時,求實數(shù)a的取值范圍;
(Ⅱ)證明:${(\frac{2015}{2016})^{2016}}<\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)y=$\frac{{x}^{2}-x+n}{{x}^{2}+1}$(n∈N*)的最小值為an,最大值為bn,且cn=$\frac{1}{2}$$\sqrt{4{a}_{n}_{n}+1}$.
(1)求數(shù)列{cn}的通項公式;
(2)設(shè)Tn=$\frac{1}{{c}_{1}}$$+\frac{1}{{c}_{2}}$+…+$\frac{1}{{c}_{n}}$,求證:2($\sqrt{n+1}$-1)<Tn<2$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)直線l過點M(2,-3)且與兩坐標(biāo)軸交于A,B兩點,若M為AB的中點.
(1)求直線l的方程;
(2)判斷l(xiāng)與圓:x2+y2-2x+4y+1=0的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在1時15分時,時針與分針?biāo)傻淖钚≌鞘?\frac{7π}{24}$弧度.

查看答案和解析>>

同步練習(xí)冊答案