已知函數(shù)y=f(x)的圖象與函數(shù)y=ax(a>0且a≠1)的圖象關(guān)于直線y=x對(duì)稱(chēng),記g(x)=f(x)[f(x)+2f(2)-1].若y=g(x)在區(qū)間[
1
2
,2]上是增函數(shù),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專(zhuān)題:計(jì)算題,分類(lèi)討論,函數(shù)的性質(zhì)及應(yīng)用
分析:先表述出函數(shù)f(x)的解析式然后代入將函數(shù)g(x)表述出來(lái),然后對(duì)底數(shù)a進(jìn)行討論即可得到答案.
解答: 解:∵函數(shù)y=f(x)的圖象與函數(shù)y=ax(a>0且a≠1)的圖象關(guān)于直線y=x對(duì)稱(chēng),
∴f(x)=logax(x>0).
g(x)=f(x)[f(x)+f(2)-1]=logax(logax+loga2-1)
=(logax+
loga2-1
2
2-
(loga2-1)2
4
,
①當(dāng)a>1時(shí),y=logax在區(qū)間[
1
2
,2]上是增函數(shù),∴l(xiāng)ogax∈[loga
1
2
,loga2].
由于y=g(x)在區(qū)間[
1
2
,2]上是增函數(shù),∴
1-loga2
2
≤loga
1
2
,化為loga2≤-1,
解得a
1
2
,舍去.
②當(dāng)0<a<1時(shí),y=logax在區(qū)間[
1
2
,2]上是減函數(shù),∴l(xiāng)ogax∈[loga2,loga
1
2
].
由于y=g(x)在區(qū)間[
1
2
,2]上是增函數(shù),∴
1-loga2
2
≥loga
1
2
,解得0<a
1
2

綜上可得:0<a
1
2

故答案為:(0,
1
2
].
點(diǎn)評(píng):本題考查反函數(shù)的性質(zhì)、二次函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性、復(fù)合函數(shù)的單調(diào)性,考查了分類(lèi)討論的思想方法,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
lim
n→∞
An2+2n+3
4n2-3n+4
=
1
B
(A,B均為實(shí)數(shù)),則AB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)是函數(shù)y=ax(a>0,且a≠1)的反函數(shù),其圖象經(jīng)過(guò)點(diǎn)(
a
,a),則f(x)=( 。
A、y=log2x
B、2-x
C、x2
D、y=log
1
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a b c分別是△ABC的三個(gè)內(nèi)角ABC所對(duì)的邊,則a2=b(b+c)是A=2B的(  )
A、既不充分也不必要條件
B、充分而不必要條件
C、必要而不充分條件
D、充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖程序,輸出S的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,a1+a2+a3+a18+a19+a20=54,則此數(shù)列前20項(xiàng)和等于( 。
A、160B、180
C、200D、220

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax(a>0,a≠1)的圖象過(guò)點(diǎn)(-2,
1
16
),則f(-
3
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
π
2
<θ<π,sin(
π
2
+θ)=-
3
5
,則tan(π-θ)的值為( 。
A、
3
4
B、-
4
3
C、-
3
4
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫(xiě)出下列命題的否定:
(1)p:y=sinx是周期函數(shù)
(2)p:3<2.
(3)p:空集是集合A的子集.

查看答案和解析>>

同步練習(xí)冊(cè)答案