分析 對f(x)去絕對值,得到分段函數(shù),對a進行分類討論,得到最小值.
解答 解:∵f(x)=x|x-a|-2x+a2=$\left\{\begin{array}{l}{{x}^{2}-(a+2)x+{a}^{2},}&{x≥a}\\{-{x}^{2}+(a-2)x+{a}^{2},}&{x<a}\end{array}\right.$
①-2≤a≤2時,$\frac{a}{2}-1≤a,\frac{a}{2}+1≥a$
f(x)min=min{f(-3),f($\frac{a}{2}+1$)}=min{a2-3a-3,$\frac{1}{4}$(3a2-4a-4)}=$\left\{\begin{array}{l}{\frac{3{a}^{2}-4a-4}{4}}&{-2≤a<4-2\sqrt{6}}\\{{a}^{2}-3a-3,}&{4-2\sqrt{6}≤a≤2}\end{array}\right.$
②2<a≤4時,$\frac{a}{2}-1≤a,\frac{a}{2}+1<a$
f(x)min=min{f(-3),f(a)}=min{a2-3a-3,a2-2a}=a2-3a-3,
綜上:f(x)min=$\left\{\begin{array}{l}{\frac{3{a}^{2}-4a-4}{4},}&{-2≤a<4-2\sqrt{6}}\\{{a}^{2}-3a-3,}&{4-2\sqrt{6}≤a≤4}\end{array}\right.$
點評 本題考查二次函數(shù)去絕對值,得到分段函數(shù),對a進行分類討論,得到最小值.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-5<x<3} | B. | {x|x<-5} | C. | {x|x<-5或x>3} | D. | {x|x>3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | b,c?∂.a(chǎn)⊥b,a⊥c | B. | b,c?∂.a(chǎn)∥b,a∥c | ||
C. | b,c?∂.b∩c=A,a⊥b,a⊥c | D. | b,c?∂.b∥c,a⊥b,a⊥c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a≥8 | B. | a<8 | C. | a≥4 | D. | a<4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | $-\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $(1,\frac{4}{3})$ | B. | $(\frac{2}{3},1]$ | C. | $[\frac{2}{3},1]$ | D. | $[1,\frac{4}{3}]$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com