【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為,中心角為,甲由扇形中心出發(fā)沿以每秒2米的速度向快走,同時(shí)乙從出發(fā),沿扇形弧以每秒米的速度向慢跑,記秒時(shí)甲、乙兩人所在位置分別為,,通過(guò)計(jì)算,判斷下列說(shuō)法是否正確:

(1)當(dāng)時(shí),函數(shù)取最小值;

(2)函數(shù)在區(qū)間上是增函數(shù);

(3)若最小,則;

(4)上至少有兩個(gè)零點(diǎn);

其中正確的判斷序號(hào)是______(把你認(rèn)為正確的判斷序號(hào)都填上)

【答案】②③④

【解析】

建立如下圖所示的平面直角坐標(biāo)系,根據(jù)題意求出兩點(diǎn)坐標(biāo),求出,并計(jì)算出的值,對(duì)四個(gè)選項(xiàng)逐一判斷即可.

建立如下圖所示的平面直角坐標(biāo)系,

因?yàn)榧子缮刃沃行?/span>出發(fā)沿以每秒2米的速度向快走,所以,

乙從出發(fā),沿扇形弧以每秒米的速度向慢跑,所以,因此,其中

,

當(dāng)時(shí),因?yàn)?/span>,所以此時(shí)函數(shù)不是最小值;

當(dāng)時(shí),當(dāng)時(shí),結(jié)合圖象可得M向左上方移動(dòng),而N沿x正半軸向右邊移動(dòng),因此MN越來(lái)越大,增函數(shù)

由于當(dāng)時(shí),,而所以若最小,則;

,因?yàn)?/span>,所以時(shí),存在,即上至少有兩個(gè)零點(diǎn);

故答案為:②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合由滿(mǎn)足下列兩個(gè)條件的數(shù)列構(gòu)成:②存在實(shí)數(shù)使得對(duì)任意正整數(shù)都成立.

(1)現(xiàn)在給出只有5項(xiàng)的有限數(shù)列試判斷數(shù)列是否為集合的元素;

(2)設(shè)數(shù)列的前項(xiàng)和為若對(duì)任意正整數(shù)點(diǎn)均在直線(xiàn)上,證明:數(shù)列并寫(xiě)出實(shí)數(shù)的取值范圍;

(3)設(shè)數(shù)列若數(shù)列沒(méi)有最大值,求證:數(shù)列一定是單調(diào)遞增數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,空間幾何體由兩部分構(gòu)成,上部是一個(gè)底面半徑為1,高為2的圓錐,下部是一個(gè)底面半徑為1,高為2的圓柱,圓錐和圓柱的軸在同一直線(xiàn)上,圓錐的下底面與圓柱的上底面重合,點(diǎn)是圓錐的頂點(diǎn),是圓柱下底面的一條直徑,、是圓柱的兩條母線(xiàn),是弧的中點(diǎn).

(1)求異面直線(xiàn)所成的角的大。

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】的內(nèi)角,的對(duì)邊分別為,,,已知 ,.

(1)求角

(2)若點(diǎn)滿(mǎn)足,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出條件:①;②;③;④;使得函數(shù),對(duì)任意,都使成立的條件序號(hào)是()

A.①③B.②④C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)、、,如果存在實(shí)數(shù)、使得,那么稱(chēng)、的生成函數(shù).

1)若,,,則是否分別為、的生成函數(shù)?并說(shuō)明理由;

2)設(shè),,,生成函數(shù),若不等式上有解,求實(shí)數(shù)的取值范圍;

3)設(shè),,,生成函數(shù)圖象的最低點(diǎn)坐標(biāo)為,若對(duì)于任意正實(shí)數(shù),試問(wèn)是否存在最大的常數(shù),使恒成立?如果存在,求出這個(gè)的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的零點(diǎn)的個(gè)數(shù);

2)當(dāng)函數(shù)有兩個(gè)零點(diǎn)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),則不等式的解集為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度,再將圖像上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍(縱坐標(biāo)不變),得到的圖像.

(1)求的單調(diào)遞增區(qū)間;

(2)若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案