等差數(shù)列
的前
項(xiàng)之和為
,若
為一個(gè)確定的常數(shù),則下列各數(shù)中也可以確定的是( )
試題分析:
為定值,
為定值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
對(duì)于任意的
(
不超過(guò)數(shù)列的項(xiàng)數(shù)),若數(shù)列的前
項(xiàng)和等于該數(shù)列的前
項(xiàng)之積,則稱該數(shù)列為
型數(shù)列。
(1)若數(shù)列
是首項(xiàng)
的
型數(shù)列,求
的值;
(2)證明:任何項(xiàng)數(shù)不小于3的遞增的正整數(shù)列都不是
型數(shù)列;
(3)若數(shù)列
是
型數(shù)列,且
試求
與
的遞推關(guān)系,并證明
對(duì)
恒成立。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知無(wú)窮數(shù)列
中,
、
、
、
構(gòu)成首項(xiàng)為2,公差為-2的等差數(shù)列,
、
、
、
,構(gòu)成首項(xiàng)為
,公比為
的等比數(shù)列,其中
,
.
(1)當(dāng)
,
,時(shí),求數(shù)列
的通項(xiàng)公式;
(2)若對(duì)任意的
,都有
成立.
①當(dāng)
時(shí),求
的值;
②記數(shù)列
的前
項(xiàng)和為
.判斷是否存在
,使得
成立?若存在,求出
的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
數(shù)列
的各項(xiàng)均為正數(shù),
為其前
項(xiàng)和,對(duì)于任意的
,總有
成等差數(shù)列.
(1)求
;
(2)求數(shù)列
的通項(xiàng)公式;
(3)設(shè)數(shù)列
的前
項(xiàng)和為
,且
,求證:對(duì)任意正整數(shù)
,總有
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
若數(shù)列
的前n項(xiàng)和為
,則下列命題:
(1)若數(shù)列
是遞增數(shù)列,則數(shù)列
也是遞增數(shù)列;
(2)數(shù)列
是遞增數(shù)列的充要條件是數(shù)列
的各項(xiàng)均為正數(shù);
(3)若
是等差數(shù)列(公差
),則
的充要條件是
(4)若
是等比數(shù)列,則
的充要條件是
其中,正確命題的個(gè)數(shù)是( )
A.0個(gè) | B.1個(gè) | C.2個(gè) | D.3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
若數(shù)列
滿足
,則當(dāng)
取最小值時(shí)
的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
數(shù)列
滿足
,且
.
(1)求
(2)是否存在實(shí)數(shù)t,使得
,且{
}為等差數(shù)列?若存在,求出t的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
等差數(shù)列
的前
項(xiàng)和為
,公差為
,已知
,
,則下列結(jié)論正確的是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知等比數(shù)列
的首項(xiàng)
公比
,則
( )
查看答案和解析>>