【題目】如圖,已知直線與拋物線y2=2px(p>0)交于A,B兩點(diǎn),且OA⊥OB,OD⊥AB交AB于點(diǎn)D(不為原點(diǎn)).
(Ⅰ)求點(diǎn)D的軌跡方程;
(Ⅱ)若點(diǎn)D坐標(biāo)為(2,1),求p的值.
【答案】解:(Ⅰ)設(shè)點(diǎn)A的坐標(biāo)(x1 , y1),點(diǎn)B的坐標(biāo)(x2 , y2),點(diǎn)D的坐標(biāo)為(x0 , y0)(x0≠0), 由OA⊥OB得x1x2+y1y2=0.
由已知,得直線AB的方程為 .
又有 ,
由x1x2+y1y2=0得 .
把 代入y2=2px并消去x得 ,
得
代入
得
故所求點(diǎn)D的軌跡方程為x2+y2﹣2px=0(x≠0).
(Ⅱ)把x=2,y=1代入方程x2+y2﹣2px=0中,得
【解析】(Ⅰ)設(shè)點(diǎn)A的坐標(biāo)(x1 , y1),點(diǎn)B的坐標(biāo)(x2 , y2),點(diǎn)D的坐標(biāo)為(x0 , y0)(x0≠0),由OA⊥OB,得x1x2+y1y2=0,由此入手能求出點(diǎn)D的方程.(Ⅱ)點(diǎn)D(2,1)代入方程x2+y2﹣2px=0,能求出結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,已知 ∥ , =(6,1), =(x,y), =(﹣2,﹣3).
(1)求用x表示y的關(guān)系式;
(2)若 ⊥ ,求x、y值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 =1(a>b>0)的離心率為 .A為橢圓上異于頂點(diǎn)的一點(diǎn),點(diǎn)P滿足 = ,
(1)若點(diǎn)P的坐標(biāo)為(2, ),求橢圓的方程;
(2)設(shè)過點(diǎn)P的一條直線交橢圓于B,C兩點(diǎn),且 =m ,直線OA,OB的斜率之積﹣ ,求實(shí)數(shù)m的值;
(3)在(1)的條件下,是否存在定圓M,使得過圓M上任意一點(diǎn)T都能作出該橢圓的兩條切線,且這兩條切線互相垂直?若存在,求出定圓M;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三個(gè)頂點(diǎn)分別為A(1,0),B(1,4),C(3,2),直線l經(jīng)過點(diǎn)D(0,4).
(1)判斷△ABC的形狀;
(2)求△ABC外接圓M的方程;
(3)若直線l與圓M相交于P,Q兩點(diǎn),且PQ=2 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
設(shè)函數(shù)f(x)=x2-x+15,且|x-a|<1,
(1)若,求的取值范圍;
(2)求證:|f(x)-f(a)|<2(|a|+1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積.
(1)求點(diǎn)的軌跡方程;
(2)在點(diǎn)的軌跡上有一點(diǎn)且點(diǎn)在軸的上方, ,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,摩天輪的半徑為,它的最低點(diǎn)距地面的高度忽略不計(jì).地上有一長度為的景觀帶,它與摩天輪在同一豎直平面內(nèi),且.點(diǎn)從最低點(diǎn)處逆時(shí)針方向轉(zhuǎn)動(dòng)到最高點(diǎn)處,記.
(1)當(dāng)時(shí),求點(diǎn)距地面的高度;
(2)試確定的值,使得取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過B(1,2)作兩條互相垂直的直線l1和l2 , l1交y軸正半軸于點(diǎn)A,l2交x軸正半軸于點(diǎn)C.
(1)若A(0,1),求點(diǎn)C的坐標(biāo);
(2)試問是否總存在經(jīng)過O,A,B,C四點(diǎn)的圓?若存在,求出半徑最小的圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2 (a為常數(shù))是奇函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若當(dāng)x∈(1,3]時(shí),f(x)>m恒成立.求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com