15.已知i是虛數(shù)單位,若復數(shù)z滿足(2-i)z=3+i,則復數(shù)z為1+i.

分析 把已知等式變形,然后由復數(shù)代數(shù)形式的乘除運算化簡復數(shù)z得答案.

解答 解:由(2-i)z=3+i,
得$z=\frac{3+i}{2-i}=\frac{(3+i)(2+i)}{(2-i)(2+i)}=\frac{5+5i}{5}=1+i$,
故答案為:1+i.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.設集合A={x|$\frac{2x-1}{x-2}$≤0},B={x||x|<1},則A∪B=(  )
A.[-$\frac{1}{2}$,1)B.(-1,1)∪(1,2)C.(-1,2)D.[-$\frac{1}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列敘述正確的是( 。
A.第一或第二象限的角都可作為三角形的內(nèi)角
B.鈍角比第三象限的角小
C.第四象限的角一定是負角
D.始邊相同而終邊不同的角一定不相等

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.i為虛數(shù)單位,則$\frac{2}{1+i}$+i=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖所示的多面體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M,N分別為AB,DE的中點.
(Ⅰ)求證:MN∥平面BCD;
(Ⅱ)求平面EMC與平面BCD所成的銳二面角的余弦值;
(Ⅲ)在線段CD上是否存在點F,使直線MF與平面EMC所成角為$\frac{π}{6}$,若存在,求出CF的長,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足b1=a1=3,b4=a2,b13=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=(-1)nbn+anbn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)y=f(x)的周期為2,當x∈[0,2]時,f(x)=(x-1)2,如果g(x)=f(x)-log5|x-1|,則函數(shù)的所有零點之和為( 。
A.8B.6C.4D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.數(shù)列{an}的首項a1=1,前n項和為Sn,滿足關系3Sn-5Sn-1=3(n≥2)
(1)求數(shù)列{an}的通項公式;
(2)設函數(shù)$f(x)=\frac{2x+3}{3x}$,作數(shù)列{bn},使b1=1,${b_n}=f(\frac{1}{{{b_{n-1}}}})$.(n≥2)求bn的通項公式
(3)求Tn=(b1b2-b2b3)+(b3b4-b4b5)+…+(b2n-1b2n-b2nb2n+1)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知拋物線C:y2=2px(p>0)上一點(5,m)到焦點的距離為6,P,Q分別為拋物線C與圓M:(x-6)2+y2=1上的動點,當|PQ|取得最小值時,向量$\overrightarrow{PQ}$在x軸正方向上的投影為( 。
A.2-$\frac{{\sqrt{5}}}{5}$B.2$\sqrt{5}$-1C.1-$\frac{{\sqrt{21}}}{21}$D.$\sqrt{21}$-1

查看答案和解析>>

同步練習冊答案