5.某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分記錄用莖葉圖表示,從莖葉圖的分布情況看,乙運(yùn)動(dòng)員的發(fā)揮更穩(wěn)定.(填“甲”或“乙”)

分析 由莖葉圖知甲的得分相對(duì)分散,乙的得分相對(duì)集中,由此能求出結(jié)果.

解答 解:由某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分記錄的莖葉圖表知:
甲的得分相對(duì)分散,乙的得分相對(duì)集中,
∴從莖葉圖的分布情況看,乙運(yùn)動(dòng)員的發(fā)揮更穩(wěn)定.
故答案為:乙.

點(diǎn)評(píng) 本題考查甲、乙運(yùn)動(dòng)員誰(shuí)的發(fā)揮更穩(wěn)定的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意莖葉圖的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若-$\frac{π}{8}$<θ<0,則sinθ,cosθ,tanθ的大小關(guān)系為( 。
A.sinθ<tanθ<cosθB.tanθ<sinθ<cosθC.tanθ<cosθ<sinθD.sinθ<cosθ<tanθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.給定兩個(gè)命題p:函數(shù)y=x2+8ax+1在[-1,1]上單調(diào)遞增;q:方程$\frac{x^2}{a+2}+\frac{y^2}{a-1}$=1表示雙曲線(xiàn),如果命題“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知關(guān)于x的方程為x2+x+n2=0,若n∈[-1,1],則方程有實(shí)數(shù)根的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.經(jīng)過(guò)點(diǎn)M(2$\sqrt{6}$,-2$\sqrt{6}$)且與雙曲線(xiàn)$\frac{y^2}{3}$-$\frac{x^2}{4}$=1有共同漸近線(xiàn)的雙曲線(xiàn)方程為( 。
A.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{8}$=1B.$\frac{{y}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{6}$=1D.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{8}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)全集U=R,$A=\left\{{x|\frac{x-3}{x-1}>0}\right\}$,B={x|x<2},則(∁UA)∩B=(  )
A.{x|1≤x<2}B.{x|1<x<2}C.{x|x<2}D.{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.定義符號(hào)函數(shù)為sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則下列命題:
①|(zhì)x|=x•sgn(x);
②關(guān)于x的方程lnx•sgn(lnx)=sinx•sgn(sinx)有5個(gè)實(shí)數(shù)根;
③若lna•sgn(lna)=lnb•sgn(lnb)(a>b),則a+b的取值范圍是(2,+∞);
④設(shè)f(x)=(x2-1)•sgn(x2-1),若函數(shù)g(x)=f2(x)+af(x)+1有6個(gè)零點(diǎn),則a<-2.
正確的有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知i是虛數(shù)單位,復(fù)數(shù)$z=i+\frac{2}{1-i}$,則復(fù)數(shù)$\overline z$的虛部是( 。
A.$-\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓方程2x2+3y2=1,則它的長(zhǎng)軸長(zhǎng)是( 。
A.$\sqrt{2}$B.1C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案