20.“m=-1”是“直線l1:mx-2y-1=0和直線l2:x-(m-1)y+2=0相互平行”的充分不必要條件.(用“充分不必要”,“必要不充分條件”,“充要”,“既不充分也不必要”填空)

分析 求出直線平行的充分必要條件,根據(jù)集合的包含關(guān)系判斷即可.

解答 解:若直線l1:mx-2y-1=0和直線l2:x-(m-1)y+2=0相互平行,
則m(m-1)=2,解得:m=2或m=-1,
故m=-1是直線平行的充分不必要條件,
故答案為:充分不必要.

點(diǎn)評(píng) 本題考查了充分必要條件,考查直線的平行關(guān)系,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在等差數(shù)列{an}中,a2=3,a14=25,則a7+a9=( 。
A.22B.75C.28D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖在三棱錐S-ABC中,CA=CB=3,∠ACB=30°,高SO=8,動(dòng)點(diǎn)M、N分別在線段BC上SO上,且SN=2CM=2x,則下列四個(gè)圖象中大致描繪了四面體AMCN的體積V與x變化關(guān)系(其中x∈(0,3])的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在Rt△AOB中,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,|$\overrightarrow{OA}$|=$\sqrt{5}$,|$\overrightarrow{OB}$|=2$\sqrt{5}$,AB邊上的高為OD,D在AB上,點(diǎn)E位于線段OD上,若$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{3}{4}$,則向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影為( 。
A.$\frac{1}{2}$或$\frac{3}{2}$B.1C.1或$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),曲線C1的極坐標(biāo)方程為ρ(cosθ+2sinθ)+2=0,曲線C2的圖象與x軸、y軸分別交于A、B兩點(diǎn).
(1)判斷A、B兩點(diǎn)與曲線C1的位置關(guān)系;
(2)點(diǎn)M是曲線C1上異于A、B兩點(diǎn)的動(dòng)點(diǎn),求△MAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=a(x-1)-lnx(a為實(shí)數(shù)),g(x)=x-1,h(x)=$\left\{\begin{array}{l}g(x),f(x)<g(x)\\ f(x),f(x)≥g(x)\end{array}$.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)=a(x-1)-lnx在點(diǎn)(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若h(x)=f(x),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=lnx-$\frac{ax+1}{x-1}$,a∈R,且f'(2)=$\frac{5}{2}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:與曲線y=lnx(x>1)和y=ex都相切的直線有且只有一條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列命題成立的是( 。
A.若¬p、¬q均為真命題,則p∨q為真命題
B.命題“若x2+2x<0,則-2<x<0”的逆否命題為“若-2<x<0,則x2+2x<0”
C.方程x2=1的一個(gè)必要不充分條件是x=1
D.拋擲3枚質(zhì)地均勻的硬幣,事件“至少有兩枚硬幣正面向上”等價(jià)于“至多有一枚硬幣反面向上”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.雙曲線E1:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,橢圓E2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與雙曲線E1有公共的焦點(diǎn),且E1,E2在第一象限和第四象限的交點(diǎn)分別為M,N,弦MN過(guò)F2,則橢圓E2的標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{\frac{81}{4}}$+$\frac{{y}^{2}}{\frac{45}{4}}$=1B.$\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

同步練習(xí)冊(cè)答案