10.已知α,β∈(0,$\frac{π}{2}$),且tanα>cotβ,求證:α+β>$\frac{π}{2}$.

分析 利用正切函數(shù)的單調(diào)性,即可證明.

解答 證明:∵β∈(0,$\frac{π}{2}$),
∴$\frac{π}{2}$-β∈(0,$\frac{π}{2}$),
∵tanα>cotβ,
∴tanα>tan($\frac{π}{2}$-β),
∵α∈(0,$\frac{π}{2}$),
∴α>$\frac{π}{2}$-β,
∴α+β>$\frac{π}{2}$.

點評 本題考查不等式的證明,考查正切函數(shù)的單調(diào)性,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)xOy中,直線l的參數(shù)方程為{$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=3+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))在以O(shè)為極點.x軸正半軸為極軸的極坐標(biāo)系中.曲線C的極坐標(biāo)方程為ρ=4sinθ-2cosθ.
(I)求直線l的普通方程與曲線C的直角坐標(biāo)方程:
(Ⅱ)若直線l與y軸的交點為P,直線l與曲線C的交點為A,B,求|PA||PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知三棱錐A-BCD中,DA⊥平面BCD,底面△BCD為等邊三角形,且BC=2,AD=2$\sqrt{3}$,則此三棱錐的外接球的表面積為$\frac{52}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=-x2+2x+3,x∈(-3,2],則f(x)的值域為( 。
A.(-12,3]B.(-12,3)C.(-12,4]D.(-12,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}中,an>0且前n項和Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),則Sn=$\sqrt{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=10,($\overrightarrow{a}$,$\overrightarrow$)=120°,則向量$\overrightarrow$在向量$\overrightarrow{a}$方向上的投影是-5,向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的投影是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)若sinx=$\frac{a+1}{a-2}$,求實數(shù)a的取值范圍.
(2)求函數(shù)y=cos2x+2sinx-2的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)F1、F2是雙曲線$\frac{{x}^{2}}{4}$-y2=1的兩個焦點,點P在雙曲線上,且∠F1PF2=90°,則點P到x軸的距離為(  )
A.1B.$\frac{\sqrt{5}}{5}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,一船自西向東勻速航行,上午10時到達(dá)一座燈塔P的南偏西75°距燈塔60海里的M處,下午2時到達(dá)這座燈塔的東偏南45°的N處,則該船航行的速度為$\frac{15\sqrt{6}}{2}$海里/小時.

查看答案和解析>>

同步練習(xí)冊答案