14.等腰直角△ABC 中,A=90°,AB=AC=2,則向量$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影為( 。
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.-$\frac{{\sqrt{2}}}{2}$

分析 根據(jù)平面向量的數(shù)量積的幾何意義求投影.

解答 解:等腰直角△ABC 中,A=90°,AB=AC=2,則向量$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影為:|$\overrightarrow{AB}$|cos(π-B)=-2×cos$\frac{π}{4}$=-$\sqrt{2}$;
故選B.

點(diǎn)評(píng) 本題考查了平面向量的投影的計(jì)算;關(guān)鍵是明確數(shù)量積的幾何意義,利用數(shù)量積公式解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,已知$A(\sqrt{3},3)$,AB邊上的中線CM所在直線方程為$5\sqrt{3}x+9y-18=0$,∠B的角平分線BT所在直線的方程為y=1.求
(1)求頂點(diǎn)B的坐標(biāo);
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a≥b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B,過點(diǎn)O且斜率為$\frac{1}{6}$的直線與直線AB相交M,且$\overrightarrow{MA}=\frac{1}{3}\overrightarrow{BM}$.
(Ⅰ)求橢圓E的離心率e;
(Ⅱ)PQ是圓C:(x-2)2+(y-1)2=5的一條直徑,若橢圓E經(jīng)過P,Q兩點(diǎn),求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知曲線f(x)=lnx在點(diǎn)(2,f(2))處的切線與直線ax+y+1=0垂直,則實(shí)數(shù)a的值為( 。
A.$\frac{1}{2}$B.-2C.2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.要得到函數(shù)y=sin(3x+$\frac{π}{4}$)的圖象,只需要將函數(shù)y=sin3x的圖象(  )
A.向右平移$\frac{π}{12}$個(gè)單位B.向左平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{12}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,點(diǎn)E是棱PA的中點(diǎn),PB=PD,平面BDE⊥平面ABCD.
(Ⅰ)求證:PC∥平面BDE;
(Ⅱ)求證:PC⊥平面ABCD;
(Ⅲ) 設(shè)PC=λAB,試判斷平面PAD⊥平面PAB能否成立;若成立,寫出λ的一個(gè)值(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,利用正弦定理解三角形時(shí),其中有兩解的選項(xiàng)是(  )
A.a=3,b=6,A=30°B.a=6,b=5,A=150°C.$a=3,b=4\sqrt{3},A={60^0}$D.$a=\frac{9}{2},b=5,A={30^0}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形,直線x+y+1=0與以橢圓C的右焦點(diǎn)為圓心,以橢圓的長半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)過點(diǎn)M(2,0)的直線l與橢圓C相交于不同的兩點(diǎn)S,T,若橢圓C的左焦點(diǎn)為F1,求△F1ST面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.變量x,y滿足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,若存在x,y使得4x+3y=k,則k的最大值是( 。
A.5B.6C.8D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案