2.已知曲線f(x)=lnx在點(diǎn)(2,f(2))處的切線與直線ax+y+1=0垂直,則實(shí)數(shù)a的值為(  )
A.$\frac{1}{2}$B.-2C.2D.$-\frac{1}{2}$

分析 求出f(x)的導(dǎo)數(shù),可得切線的斜率,由兩直線垂直的條件:斜率之積為-1,即可求得a的值.

解答 解:f(x)=lnx的導(dǎo)數(shù)為f′(x)=$\frac{1}{x}$,
可得曲線f(x)=lnx在點(diǎn)(2,f(2))處的切線斜率為$\frac{1}{2}$,
切線與直線ax+y+1=0垂直,可得-a•$\frac{1}{2}$=-1,
解得a=2.
故選:C.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的應(yīng)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運(yùn)用兩直線垂直的條件:斜率之積為-1是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.下面命題正確的是(5).
(1)兩條直線a,b沒有公共點(diǎn),那么a與b是異面直線.
(2)如果直線a,b和平面α滿足a∥平面α,b∥平面α,那么a∥b.
(3)如果直線a,b和平面α滿足a∥b,a∥平面α,那么b∥平面α.
(4)若直線a不平行于平面α,則平面α內(nèi)不存在與直線a平行的直線.
(5)如果直線a∥平面α,點(diǎn)P∈平面α,那么過點(diǎn)P且平行于直線a的直線只有一條,且在平面α內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列各式中S的值不可以用算法求解的是( 。
A.S=1+2+3+4B.S=1+2+3+4+…
C.S=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{100}$D.S=12+22+32+…+1002

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.1和5的等差中項(xiàng)是(  )
A.$\sqrt{5}$B.$±\sqrt{5}$C.3D.±3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.一個(gè)蜂巢里有1只蜜蜂.第1天,它飛出去找回了2個(gè)伙伴;第2天,3只蜜蜂飛出去,各自找回了2個(gè)伙伴…如果這個(gè)找伙伴的過程繼續(xù)下去,第5天所有的蜜蜂都?xì)w巢后,蜂巢中一共有243只蜜蜂.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.曲線f(x)=sin($\frac{π}{6}$-x)與直線x=-$\frac{π}{6}$,x=$\frac{π}{6}$,y=0所圍成的平面圖形的面積為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.等腰直角△ABC 中,A=90°,AB=AC=2,則向量$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影為( 。
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.-$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.把下列復(fù)數(shù)化為指數(shù)形式和極坐標(biāo)形式.
(1)$\sqrt{2}+\sqrt{2}$i;
(2)-2+2i;
(3)1+i;
(4)-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某市春節(jié)7家超市的廣告費(fèi)支出x(萬(wàn)元)和銷售額y(萬(wàn)元)數(shù)據(jù)如下,
 超市 A B C D E F G
 廣告費(fèi)支出x 1 2 4 6 11 13 19
 銷售額y 19 32 40 44 52 53 54
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關(guān)于x的線性回歸方程;$\widehat{y}$=$\widehat$x+$\widehat{a}$
(2)用二次函數(shù)回歸模型擬合y與x的關(guān)系,可得回歸方程:$\widehat{y}$=-0.17x2+5x+20.
經(jīng)計(jì)算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請(qǐng)用R2說明選擇哪個(gè)回歸模型更合適.并用此模型預(yù)測(cè)A超市廣告費(fèi)支出為3萬(wàn)元時(shí)的銷售額,
參考數(shù)據(jù)及公式:$\overline{x}$=8,$\overline{y}$=42.$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=708,
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x.

查看答案和解析>>

同步練習(xí)冊(cè)答案