15.變量x,y滿足$\left\{\begin{array}{l}{x+y≤2}\\{2x-3y≤9}\\{x≥0}\end{array}\right.$,若存在x,y使得4x+3y=k,則k的最大值是( 。
A.5B.6C.8D.9

分析 作出平面區(qū)域,根據(jù)圖象得出最優(yōu)解,從而得出k的最大值.

解答 解:作出平面區(qū)域如圖所示:

由4x+3y=k可得y=-$\frac{4}{3}x$+$\frac{k}{3}$,
由圖象可知當直線y=-$\frac{4}{3}x$+$\frac{k}{3}$經過點A時截距最大,從而k取得最大值.
解方程組$\left\{\begin{array}{l}{2x-3y=9}\\{x+y=2}\end{array}\right.$得A(3,-1).
∴k的最大值為4×3+3×(-1)=9.
故選D.

點評 本題考查了簡單的線性規(guī)劃,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.等腰直角△ABC 中,A=90°,AB=AC=2,則向量$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影為( 。
A.$\sqrt{2}$B.-$\sqrt{2}$C.$\frac{{\sqrt{2}}}{2}$D.-$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若x,y都是正數(shù),且x+y=3,則$\frac{4}{x+1}+\frac{1}{y+1}$的最小值為$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某市春節(jié)7家超市的廣告費支出x(萬元)和銷售額y(萬元)數(shù)據(jù)如下,
 超市 A B C D E F G
 廣告費支出x 1 2 4 6 11 13 19
 銷售額y 19 32 40 44 52 53 54
(1)請根據(jù)上表提供的數(shù)據(jù).用最小二乘法求出y關于x的線性回歸方程;$\widehat{y}$=$\widehat$x+$\widehat{a}$
(2)用二次函數(shù)回歸模型擬合y與x的關系,可得回歸方程:$\widehat{y}$=-0.17x2+5x+20.
經計算二次函數(shù)回歸模型和線性回歸模型的R2分別約為0.93和0.75,請用R2說明選擇哪個回歸模型更合適.并用此模型預測A超市廣告費支出為3萬元時的銷售額,
參考數(shù)據(jù)及公式:$\overline{x}$=8,$\overline{y}$=42.$\sum_{i=1}^{7}$xiyi=2794,$\sum_{i=1}^{7}$x${\;}_{i}^{2}$=708,
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.定義在(0,+∞)上的函數(shù)y=f(x)的反函數(shù)為y=f-1(x),若g(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x≤0}\\{f(x),x>0}\end{array}\right.$為奇函數(shù),則f-1(x)=2的解為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若l1:x+(m+1)y+(m-2)=0,l2:mx+2y+8=0的圖象是兩條平行直線,則m的值是( 。
A.m=1或m=-2B.m=1C.m=-2D.m的值不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知$\overrightarrow a=(1,x),\overrightarrow b=(x-1,2)$,若$\overrightarrow a$∥$\overrightarrow b$,則實數(shù)x的值為( 。
A.2B.-1C.1或-2D.-1或2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若直線y=kx+2與直線y=2x-1互相平行,則實數(shù)k=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.計算8${\;}^{-\frac{2}{3}}$+2lg2-lg$\frac{1}{25}$的值為$\frac{9}{4}$.

查看答案和解析>>

同步練習冊答案