【題目】已知圓的圓心在直線.
(1)若圓與軸的正半軸相切,且該圓截軸所得弦的長為,求圓的標準方程;
(2)在(1)的條件下,直線與圓交于兩點,,若以為直徑的圓過坐標原點,求實數(shù)的值;
(3)已知點,圓的半徑為3,且圓心在第一象限,若圓上存在點,使(為坐標原點),求圓心的縱坐標的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)設出圓心坐標,根據(jù)圓與軸正半軸相切以及該圓截軸所得弦的長,求得圓的圓心和半徑,由此求得圓的方程.
(2)聯(lián)立直線的方程和圓的方程,寫出判別式和韋達定理,結(jié)合圓的幾何性質(zhì)有,化簡此方程求得的值.
(3)設,根據(jù)求得的軌跡方程,將問題轉(zhuǎn)化為兩個圓有公共點的問題來求解出圓心的縱坐標的取值范圍.
(1)因為圓的圓心在直線上,所以可設圓心為.
因為圓與軸的正半軸相切,所以,半徑.
又因為該圓截軸所得弦的長為,
所以,解得.
因此,圓心為,半徑.
所以圓的標準方程為.
(2)由消去,得.
整理得. (★)
由,得, (※)
設,,則,,
因為以為直徑的圓過原點,可知,的斜率都存在,且,
整理得,即.
化簡得,即.
整理得.解得.
當時,,. ③
由③,得,從而,
可見,時滿足不等式(※).均符合要求.
(3)圓的半徑為3,設圓的圓心為,
由題意,,則圓的方程為.
又因為,,
設點的坐標為,則,
整理得.
它表示以為圓心,2為半徑的圓,記為圓.
由題意可知,點既在圓上又在圓上,即圓和圓有公共點.
所以,且.
即,且.
所以,即,解得.
所以圓心的縱坐標的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的左,右焦點分別為, ,離心率為, 是橢圓上的動點,當時, 的面積為.
(1)求橢圓的標準方程;
(2)若過點的直線交橢圓于, 兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設遞增數(shù)列共有項,定義集合,將集合中的數(shù)按從小到大排列得到數(shù)列;
(1)若數(shù)列共有4項,分別為,,,,寫出數(shù)列的各項的值;
(2)設是公比為2的等比數(shù)列,且,若數(shù)列的所有項的和為4088,求和的值;
(3)若,求證:為等差數(shù)列的充要條件是數(shù)列恰有7項;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線 的左、右焦點分別為,過作傾斜角為的直線與軸和雙曲線的右支分別交于兩點,若點平分線段,則該雙曲線的離心率是( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,試討論函數(shù)的單調(diào)性;
(Ⅱ)設,當對任意的恒成立時,求函數(shù)的最大值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若某產(chǎn)品的直徑長與標準值的差的絕對值不超過1mm 時,則視為合格品,否則視為不合格品。在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機抽取5000件進行檢測,結(jié)果發(fā)現(xiàn)有50件不合格品。計算這50件不合格品的直徑長與標準值的差(單位:mm), 將所得數(shù)據(jù)分組,得到如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
[-3, -2) |
| 0.10 |
[-2, -1) | 8 |
|
(1,2] |
| 0.50 |
(2,3] | 10 |
|
(3,4] |
|
|
合計 | 50 | 1.00 |
(Ⅰ)將上面表格中缺少的數(shù)據(jù)填在答題卡的相應位置;
(Ⅱ)估計該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標準值的差落在區(qū)間(1,3]內(nèi)的概率;
(Ⅲ)現(xiàn)對該廠這種產(chǎn)品的某個批次進行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品。據(jù)此估算這批產(chǎn)品中的合格品的件數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某濕地公園內(nèi)有一條河,現(xiàn)打算建一座橋?qū)⒑觾砂兜穆愤B接起來,剖面設計圖紙如下:
其中,點為軸上關(guān)于原點對稱的兩點,曲線段是橋的主體,為橋頂,且曲線段在圖紙上的圖形對應函數(shù)的解析式為,曲線段均為開口向上的拋物線段,且分別為兩拋物線的頂點,設計時要求:保持兩曲線在各銜接處()的切線的斜率相等.
(1)求曲線段在圖紙上對應函數(shù)的解析式,并寫出定義域;
(2)車輛從經(jīng)倒爬坡,定義車輛上橋過程中某點所需要的爬坡能力為:(該點與橋頂間的水平距離)(設計圖紙上該點處的切線的斜率),其中的單位:米.若該景區(qū)可提供三種類型的觀光車:①游客踏乘;②蓄電池動力;③內(nèi)燃機動力.它們的爬坡能力分別為米,米,米,又已知圖紙上一個單位長度表示實際長度米,試問三種類型的觀光車是否都可以順利過橋?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com