8.若實數(shù)x,y滿足:|x|≤y≤1,則x2+y2-2x的最小值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}-1$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

分析 由實數(shù)x,y滿足:|x|≤y≤1,可得可行域為:P(1,0),Q點為可行域內(nèi)的任意一點,當PQ⊥直線y=x時,|PQ|取得最小值,因此|PQ|2取得最小值.

解答 解:由實數(shù)x,y滿足:|x|≤y≤1,可得可行域為:
P(1,0),Q點為可行域內(nèi)的任意一點,當PQ⊥直線y=x時,
|PQ|取得最小值,因此|PQ|2取得最小值,
則x2+y2-2x=(x-1)2+y2-1≥|PQ|2-1=$(\frac{1-0}{\sqrt{2}})^{2}$-1=-$\frac{1}{2}$.
∴x2+y2-2x的最小值為-$\frac{1}{2}$.
故選:D.

點評 本題考查了線性規(guī)劃有關(guān)知識、點到直線的距離公式、數(shù)形結(jié)合思想方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知命題p:函數(shù)f(x)=x2-2ax+3在區(qū)間[-1,2]上單調(diào)遞增;
命題q:函數(shù)g(x)=lg(x2+ax+4)的定義域為R;
若命題“p∧q”為假,“p∨q”為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知△ABC滿足$AB=4,AC=2,∠BAC=\frac{2π}{3}$,點D、E分別是邊AB,BC的中點,連接DE并延長到點F,使得DE=2EF,則 $\overrightarrow{AF}•\overrightarrow{DC}$的值為(  )
A.-$\frac{3}{2}$B.$\frac{9}{4}$C.-2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若${(1+3x)^{2017}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2017}}{x^{2017}}$,則$\frac{a_1}{3}-\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+{(-1)^{n-1}}\frac{a_n}{3^n}+…+\frac{{{a_{2017}}}}{{{3^{2017}}}}$的值為(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,若N=10,則輸出的數(shù)等于( 。
A.$\frac{10}{9}$B.$\frac{9}{10}$C.$\frac{10}{11}$D.$\frac{12}{11}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某醫(yī)療科研項目對5只實驗小白鼠體內(nèi)的A、B兩項指標數(shù)據(jù)進行收集和分析,得到的數(shù)據(jù)如下表:
指標1號小白鼠2號小白鼠3號小白鼠4號小白鼠5號小白鼠
A57698
B22344
(1)若通過數(shù)據(jù)分析,得知A項指標數(shù)據(jù)與B項指標數(shù)據(jù)具有線性相關(guān)關(guān)系,試根據(jù)上表,求B項指標數(shù)據(jù)y關(guān)于A項指標數(shù)據(jù)x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)現(xiàn)要從這5只小白鼠中隨機抽取3只,求其中至少有一只B項指標數(shù)據(jù)高于3的概率.
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.根據(jù)如下樣本數(shù)據(jù)
345678
y4.02.5-0.50.5-2.0-3.0
得到的回歸方程為${\;}_{y}^{∧}$=${\;}_^{∧}$x+${\;}_{a}^{∧}$,則( 。
A.${\;}_{a}^{∧}$>0,${\;}_^{∧}$>0B.${\;}_{a}^{∧}$>0,${\;}_^{∧}$<0C.${\;}_{a}^{∧}$<0,${\;}_^{∧}$>0D.${\;}_{a}^{∧}$<0,${\;}_^{∧}$<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)$y=2tan(2x-\frac{π}{4})-1$在一個周期內(nèi)的圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=alnx-x+2,(其中實數(shù)a≠0).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)如果對任意的x1∈[1,e],總存在x2∈[1,e],使得f(x1)+f(x2)≥3,求a的最小值.

查看答案和解析>>

同步練習冊答案