20.根據(jù)如下樣本數(shù)據(jù)
345678
y4.02.5-0.50.5-2.0-3.0
得到的回歸方程為${\;}_{y}^{∧}$=${\;}_^{∧}$x+${\;}_{a}^{∧}$,則( 。
A.${\;}_{a}^{∧}$>0,${\;}_^{∧}$>0B.${\;}_{a}^{∧}$>0,${\;}_^{∧}$<0C.${\;}_{a}^{∧}$<0,${\;}_^{∧}$>0D.${\;}_{a}^{∧}$<0,${\;}_^{∧}$<0

分析 根據(jù)數(shù)據(jù)的變化趨勢(shì)得到$\widehat{a}$,$\widehat$的符號(hào)即可.

解答 解:結(jié)合數(shù)據(jù)得:
y隨x增加而減少,
故$\widehat$<0,$\widehat{a}$>0,
故選:B.

點(diǎn)評(píng) 本題考查了一次函數(shù)的性質(zhì),考查數(shù)據(jù)的變化,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.拋物線y2=2x的焦點(diǎn)坐標(biāo)為(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,0)D.(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.假設(shè)關(guān)于某種設(shè)備的使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)有如下統(tǒng)計(jì)資料:
x23456
y2.23.85.56.57.0
參考數(shù)據(jù):$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90,$\sum_{i=1}^{5}$xiyi=112.3.
(1)作出散點(diǎn)圖
(2)求出回歸直線方程,并估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若實(shí)數(shù)x,y滿足:|x|≤y≤1,則x2+y2-2x的最小值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}-1$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\overrightarrow{a}$$•\overrightarrow$,其中$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sin2x),$\overrightarrow$=(cosx,1),x∈R
(1)求函數(shù)y=f(x)的最小正周期和單調(diào)遞增區(qū)間:
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(A)=2,a=$\sqrt{7}$且sinB=2sinC,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.工人月工資y(元)依勞動(dòng)生產(chǎn)率x(千元)變化的回歸直線方程為${\;}_{y}^{∧}$=50+80x,下列判斷正確的是( 。
A.勞動(dòng)生產(chǎn)率為1000元時(shí),工資為50元
B.勞動(dòng)生產(chǎn)率提高1000元時(shí),工資提高130元
C.勞動(dòng)生產(chǎn)率提高1000元時(shí),工資提高80元
D.勞動(dòng)生產(chǎn)率為1000元時(shí),工資為80元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班50人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列表:
喜愛(ài)打籃球不喜愛(ài)打籃球合計(jì)
男生20525
女生101525
合計(jì)302050
(1)用分層抽樣的方法在喜歡打藍(lán)球的學(xué)生中抽6人,其中男生抽多少人?
(2)在上述抽取的6人中選2人,求恰有一名女生的概率.
(3)為了研究喜歡打藍(lán)球是否與性別有關(guān),計(jì)算出K2,你有多大的把握認(rèn)為是否喜歡打藍(lán)球與性別有關(guān)?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
下面的臨界值表供參考:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知x,y取值如表,畫(huà)散點(diǎn)圖分析可知y與x線性相關(guān),且求得回歸方程為$\widehaty=3x-5$,則m的值為3.
x01356
y12m3-m3.89.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=lnx,g(x)=0.5x2-bx,(b為常數(shù)).
(1)函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線與函數(shù)g(x)的圖象相切,求實(shí)數(shù)b的值;
(2)若函數(shù)h(x)=f(x)+g(x)在定義域上不單調(diào),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案