18.在四棱錐E-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,AC與BD交于點(diǎn)O,EC⊥底面ABCD,F(xiàn)為BE的中點(diǎn).
(Ⅰ)求證:DE∥平面ACF;
(Ⅱ)求證:BD⊥AE.

分析 (Ⅰ)連接FO,則OF為△BDE的中位線,從而DE∥OF,由此能證明DE∥平面ACF.
(Ⅱ)推導(dǎo)出BD⊥AC,EC⊥BD,從而BD⊥平面ACE,由此能證明BD⊥AE.

解答 證明:(Ⅰ)連接FO,∵底面ABCD是正方形,且O為對(duì)角線AC和BD交點(diǎn)
∴O為BD的中點(diǎn),
又∵F為BE中點(diǎn),
∴OF為△BDE的中位線,即DE∥OF,
又OF?平面ACF,DE?平面ACF,
∴DE∥平面ACF.
(Ⅱ)∵底面ABCD為正方形,∴BD⊥AC,
∵EC⊥平面ABCD,∴EC⊥BD,
∴BD⊥平面ACE,∴BD⊥AE.

點(diǎn)評(píng) 本題考查線面平行的證明,考查線線垂直的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.(x+$\frac{1}{x}$-2)5的展開式中的常數(shù)項(xiàng)為-252(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)$f(x)=\frac{1}{{{2^x}+1}}+a$為奇函數(shù),則實(shí)數(shù)a=$-\frac{1}{2}$;函數(shù)f(x)在[1,3]上的值域?yàn)?[-\frac{7}{18},-\frac{1}{6}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某圓錐的側(cè)面展開圖為半徑為1的半圓,則該圓錐底面半徑長(zhǎng)為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖所示,在四棱錐P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB中點(diǎn),F(xiàn)是DC上的點(diǎn),且$DF=\frac{1}{2}AB,PH$為△PAD中AD邊上的高.
(Ⅰ)證明:PH⊥平面ABCD;
(Ⅱ)若PH=1,AD=2,F(xiàn)C=1,求三棱錐E-BCF的體積;
(Ⅲ)證明:EF⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知m,n是兩條不同的直線,α,β是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出m⊥β的是(  )
A.α⊥β且m⊆αB.m⊥n且n⊆βC.α⊥β且m∥αD.m⊥n且n∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在正方體ABCD-A1B1C1D1中,M是AB上一點(diǎn),N是A1C的中點(diǎn),MN⊥平面A1DC.
(1)求證:AD1⊥平面A1DC;
(2)求MN與平面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在下列命題中:
①存在一個(gè)平面與正方體的12條棱所成的角都相等;
②存在一個(gè)平面與正方體的6個(gè)面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個(gè)面所成的角都相等.
其中真命題為①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.《算數(shù)書》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍,其中記載有求“蓋”的術(shù):置如其周,令相承也,又以高乘之,三十六成一,該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)L與高h(yuǎn),計(jì)算其體積V的近似公式V≈$\frac{1}{36}$L2h,它實(shí)際上是將圓錐體積公式中的圓周率π近似取3,那么近似公式V≈$\frac{2}{75}$L2h相當(dāng)于將圓錐體積公式中的π近似取為$\frac{25}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案