8.《算數(shù)書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學典籍,其中記載有求“蓋”的術(shù):置如其周,令相承也,又以高乘之,三十六成一,該術(shù)相當于給出了由圓錐的底面周長L與高h,計算其體積V的近似公式V≈$\frac{1}{36}$L2h,它實際上是將圓錐體積公式中的圓周率π近似取3,那么近似公式V≈$\frac{2}{75}$L2h相當于將圓錐體積公式中的π近似取為$\frac{25}{8}$.

分析 用L表示出圓錐的底面半徑,得出圓錐的體積關(guān)于L和h的式子V=$\frac{{L}^{2}h}{12π}$,令$\frac{{L}^{2}h}{12π}$=$\frac{2{L}^{2}h}{75}$,解出π的近似值.

解答 解:設(shè)圓錐的底面半徑為r,則圓錐的底面周長L=2πr,
∴r=$\frac{L}{2π}$,
∴V=$\frac{1}{3}π{r}^{2}h$=$\frac{1}{3}π×\frac{{L}^{2}}{4{π}^{2}}×h$=$\frac{{L}^{2}h}{12π}$.
令$\frac{{L}^{2}h}{12π}$=$\frac{2{L}^{2}h}{75}$,得π=$\frac{25}{8}$.
故答案為:$\frac{25}{8}$.

點評 本題考查了圓錐的體積公式,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.在四棱錐E-ABCD中,底面ABCD是邊長為1的正方形,AC與BD交于點O,EC⊥底面ABCD,F(xiàn)為BE的中點.
(Ⅰ)求證:DE∥平面ACF;
(Ⅱ)求證:BD⊥AE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)$y=\frac{4-cosx}{2cosx+3}$的值域為$[\frac{3}{5},5]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,∠B=$\frac{π}{4}$,∠C=$\frac{5π}{12}$,AC=2$\sqrt{6}$,AC的中點為D,若長度為3的線段PQ(P在Q的左側(cè))在直線BC上滑動,則AP+DQ的最小值為$\frac{3\sqrt{10}+\sqrt{30}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)數(shù)列{an}的前n項和Sn滿足2Sn+3=3n+1,數(shù)列{bn}滿足bn=$\frac{2}{(n+1)lo{g}_{3}{a}_{n}}$.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.為配合上海迪斯尼游園工作,某單位設(shè)計人數(shù)的數(shù)學模型(n∈N+):以f(n)=$\left\{\begin{array}{l}{200n+2000,n∈[1,8]}\\{360•{3}^{\frac{n-8}{12}}+3000,n∈[9,32]}\\{32400-720n,n∈[33,45]}\end{array}\right.$表示第n時進入人數(shù),以g(n)=$\left\{\begin{array}{l}{0,n[1,18]}\\{500n-9000,n∈[19,32]}\\{8800,n∈[33,45]}\end{array}\right.$表示第n個時刻離開園區(qū)的人數(shù);設(shè)定以15分鐘為一個計算單位,上午9點15分作為第1個計算人數(shù)單位,即n=1:9點30分作為第2個計算單位,即n=2;依此類推,把一天內(nèi)從上午9點到晚上8點15分分成45個計算單位:(最后結(jié)果四舍五入,精確到整數(shù)).
(1)試計算當天14點到15點這一個小時內(nèi),進入園區(qū)的游客人數(shù)f(21)+f(22)+f(23)+f(24)、離開園區(qū)的游客人數(shù)g(21)+g(22)+g(23)+g(24)各為多少?
(2)從13點45分(即n=19)開始,有游客離開園區(qū),請你求出這之后的園區(qū)內(nèi)游客總?cè)藬?shù)最多的時刻,并說明理由:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知數(shù)列{an}滿足a1=1,a2=2,an+2-an=1+(-1)n,則數(shù)列{an}的前30項的和為255.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知數(shù)列{an}滿足a1+a2+…+an=n2+3n(n∈N+),則$\frac{{a}_{1}^{2}}{2}+\frac{{a}_{2}^{2}}{3}+…+\frac{{a}_{n}^{2}}{n+1}$=2n2+6n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列四個說法:
①若向量{$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$}是空間的一個基底,則{$\overrightarrow{a}$+$\overrightarrow$、$\overrightarrow{a}$-$\overrightarrow$、$\overrightarrow{c}$}也是空間的一個基底.
②空間的任意兩個向量都是共面向量.
③若兩條不同直線l,m的方向向量分別是$\overrightarrow{a}$、$\overrightarrow$,則l∥m?$\overrightarrow{a}$∥$\overrightarrow$.
④若兩個不同平面α,β的法向量分別是$\overrightarrow{u}$、$\overrightarrow{v}$,且$\overrightarrow{u}$=(1,2,-2)、$\overrightarrow{v}$=(-2,-4,4),則α∥β.
其中正確的說法的個數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案