已知函數(shù),,其中.
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值;
(2)若對(duì)任意的(為自然對(duì)數(shù)的底數(shù))都有成立,求實(shí)數(shù)的取值范圍.
(1);(2)

試題分析:(1)利用函數(shù)極值點(diǎn)的導(dǎo)數(shù)等于0,且此點(diǎn)的左側(cè)和右側(cè)導(dǎo)數(shù)的符號(hào)相反,求得實(shí)數(shù)的值;(2)問題等價(jià)于對(duì)任意的時(shí),都有,分類討論,利用導(dǎo)數(shù)的符號(hào)判斷函數(shù)的單調(diào)性,由單調(diào)性求出函數(shù)的最小值及的最大值,根據(jù)它們之間的關(guān)系求出實(shí)數(shù)的取值范圍.
試題解析:(1)∵,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043934720529.png" style="vertical-align:middle;" />,∴
是函數(shù)的極值點(diǎn),∴,即.
,∴
經(jīng)檢驗(yàn)當(dāng)時(shí),是函數(shù)的極值點(diǎn),∴
(2)對(duì)任意的都有成立等價(jià)于對(duì)任意的,都有
當(dāng)時(shí),
∴函數(shù)上是增函數(shù),∴.
,且
①當(dāng)時(shí),,
∴函數(shù)上是增函數(shù),∴
,得a,
,∴不合題意.
②當(dāng)時(shí),
,則
,則
∴函數(shù)上是減函數(shù),在上是增函數(shù).
.
,得.又,∴
③當(dāng)時(shí),,
函數(shù)上是減函數(shù).
.
,得.又,∴.
綜上所述,的取值范圍為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用白鐵皮做一個(gè)平底、圓錐形蓋的圓柱形糧囤,糧囤容積為(不含錐形蓋內(nèi)空間),蓋子的母線與底面圓半徑的夾角為,設(shè)糧囤的底面圓半徑為R,需用白鐵皮的面積記為(不計(jì)接頭等)。
(1)將表示為R的函數(shù);
(2)求的最小值及對(duì)應(yīng)的糧囤的總高度。(含圓錐頂蓋)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).當(dāng)時(shí),函數(shù)取得極值
(1)求函數(shù)的解析式;
(2)若方程有3個(gè)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,半徑為30的圓形(為圓心)鐵皮上截取一塊矩形材料,其中點(diǎn)在圓弧上,點(diǎn)在兩半徑上,現(xiàn)將此矩形材料卷成一個(gè)以為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)與矩形材料的邊的夾角為,圓柱的體積為.

(1)求關(guān)于的函數(shù)關(guān)系式?
(2)求圓柱形罐子體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是(    )
A.3B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=a(x+1)(x-a),若f(x)在x=a處取得極大值,則a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=x3-3x2+1在x=________處取得極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某人進(jìn)行了如下的“三段論”推理:如果,則是函數(shù)的極值點(diǎn),因?yàn)楹瘮?shù)處的導(dǎo)數(shù)值,所以是函數(shù)的極值點(diǎn).你認(rèn)為以上推理的 (    )
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.結(jié)論正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

己知函數(shù),其導(dǎo)數(shù)的圖象如圖所示,則函數(shù)的極大值是( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案