已知數(shù)列{an},{bn}滿足a1=b1=3,an+1-an==3,n∈N*,若數(shù)列{cn}滿足cn=ban,則c2 013=( )
A.92 012 B.272 012
C.92 013 D.272 013
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立坐標(biāo)系.已知點(diǎn)A的極坐標(biāo)為,直線的極坐標(biāo)方程為ρcos=a,且點(diǎn)A在直線上.
(1) 求a的值及直線的直角坐標(biāo)方程;
(2) 圓C的參數(shù)方程為,(α為參數(shù)),試判斷直線與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,正三角形ABC外接圓的半徑為1,點(diǎn)M、N分別是邊AB、AC的中點(diǎn),延長(zhǎng)MN與△ABC的外接圓交于點(diǎn)P,求線段NP的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
執(zhí)行如圖所示的程序框圖,若輸出的k=5,則輸入的整數(shù)p的最大值為( )
A.7 B.15
C.31 D.63
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
二維空間中圓的一維測(cè)度(周長(zhǎng))l=2πr,二維測(cè)度(面積)S=πr2,觀察發(fā)現(xiàn)S′=l;三維空間中球的二維測(cè)度(表面積)S=4πr2,三維測(cè)度(體積)V=πr3,觀察發(fā)現(xiàn)V′=S.則由四維空間中“超球”的三維測(cè)度V=8πr3,猜想其四維測(cè)度W=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)集L={(x,y)|y=m·n},其中m=(2x-2b,1),n=(1,1+2b),點(diǎn)列Pn(an,bn)在點(diǎn)集L中,P1為L的軌跡與y軸的交點(diǎn),已知數(shù)列{an}為等差數(shù)列,且公差為1,n∈N*.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求·OPn+1的最小值;
(3)設(shè)cn= (n≥2),求c2+c3+c4+…+cn的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)f(x)=.
(1)求函數(shù)f(x)的最小值;
(2)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意m∈R恒成立;q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com