10.正方形ABCD的邊長為1,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,AE=BF=$\frac{3}{7}$,動(dòng)點(diǎn)P從E出發(fā)沿直線向F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角.當(dāng)點(diǎn)P第一次碰到E時(shí),P與正方形的邊碰撞的次數(shù)為14.

分析 由題意作出其圖象,由圖可得碰撞次數(shù).

解答 解:根據(jù)已知中的點(diǎn)E,F(xiàn)的位置,可知第一次碰撞點(diǎn)為F,在反射的過程中,直線是平行的,利用平行關(guān)系及三角形的相似可得第二次碰撞點(diǎn)為G,且CG=$\frac{16}{21}$,第三次碰撞點(diǎn)為H,且DH=(1-$\frac{16}{21}$)×$\frac{3}{4}$=$\frac{5}{28}$,作圖可以得到回到E點(diǎn)時(shí),需要碰撞14次即可.
故答案為:14.

點(diǎn)評 本題考查了學(xué)生的作圖能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知(x+$\frac{{\root{3}{a}}}{x}$)6的展開式中,常數(shù)項(xiàng)為40,則$\int_0^1{x^a}$dx=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$\frac{cosA+2cosC}{cosA+2cosB}$=$\frac{c}$,則△ABC是直角三角形或等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow{m}$=(sinx,cosx),$\overrightarrow{n}$=$(\frac{{\sqrt{3}}}{2},\frac{1}{2})$,x∈R,函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)求f(x)的最大值;
(2)解關(guān)于x的不等式f(x)≥$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù):
x3456
y2.5344.5
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\overrightarrow$x+$\overrightarrow{a}$
(2)已知該廠技改前50噸甲產(chǎn)品的生產(chǎn)能耗為45噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)50噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低了多少噸標(biāo)準(zhǔn)煤?
(參考公式:$\overrightarrow$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線3x+4y+10=0和圓$\left\{{\begin{array}{l}{x=2+5cosθ}\\{y=1+5sinθ}\end{array}}\right.$的位置關(guān)系是( 。
A.相切B.相離C.相交但不過圓心D.相交且過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l依次交拋物線及其準(zhǔn)線與點(diǎn)A,B,C,若BC|=2|BF|,且|AF|=3,則拋物線的方程是y2=3x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)拋物線Γ:y2=2px(p>0)上的點(diǎn)M(x0,4)到焦點(diǎn)F的距離|MF|=$\frac{5}{4}{x}_{0}$.
(1)求拋物線Γ的方程;
(2)過點(diǎn)F的直線l與拋物線T相交于A,B兩點(diǎn),線段AB的垂直平分線l′與拋物線Γ相交于C,D兩點(diǎn),若$\overrightarrow{AC}•\overrightarrow{AD}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知空間中非零向量$\overrightarrow{a}$,$\overrightarrow$不共線,并且模相等,則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-$\overrightarrow$之間的關(guān)系是( 。
A.垂直B.共線C.不垂直D.以上都有可能

查看答案和解析>>

同步練習(xí)冊答案