分析 (1)極坐標(biāo)方程兩邊同乘ρ,根據(jù)極坐標(biāo)與直角坐標(biāo)的對(duì)應(yīng)關(guān)系得出;
(2)分直線l有無(wú)斜率兩種情況計(jì)算,將|AB|表示為斜率k的函數(shù),求出最小值.
解答 解:(1)∵ρsin2θ=4cosθ.
∴ρ2sin2θ=4ρcosθ,
∴曲線C的直角坐標(biāo)方程為y2=4x.
(2)當(dāng)直線l斜率不存在時(shí),直線l的方程為x=1,
直線l與曲線C交于A(1,2),B(1,-2).
此時(shí)|AB|=4.
設(shè)直線l的斜率為k,則直線l的普通方程為y=k(x-1).
聯(lián)立方程組$\left\{\begin{array}{l}{y=k(x-1)}\\{{y}^{2}=4x}\end{array}\right.$得k2x2-(2k2+4)x+k2=0,
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=$\frac{2{k}^{2}+4}{{k}^{2}}$,x1x2=1.
∴|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{4+4{k}^{2}}{{k}^{2}}$=4+$\frac{4}{{k}^{2}}$>4.
∴|AB|取得最小值4.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,直線與圓錐曲線的位置關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2017屆河北衡水中學(xué)高三上學(xué)期調(diào)研三考數(shù)學(xué)(理)試卷(解析版) 題型:解答題
已知,集合,把中的元素從小到大依次排成一列,得到數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)記,設(shè)數(shù)列的前項(xiàng)和為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{20}{27}$ | B. | $\frac{2}{3}$ | C. | $\frac{16}{27}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{2}{5}+\frac{1}{5}i$ | B. | $\frac{2}{3}+\frac{1}{3}i$ | C. | $\frac{2}{3}-\frac{1}{3}i$ | D. | $-\frac{2}{5}-\frac{1}{5}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2-($\frac{1}{2}$)n-1 | B. | 2-($\frac{1}{2}$)n | C. | 2-$\frac{n+2}{{2}^{n}}$ | D. | 2-$\frac{n+1}{{2}^{n}}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com