為了得到函數(shù)y=31-x的圖象,可以把函數(shù)y=3-x的圖象( 。
A、向左平移3個(gè)單位長(zhǎng)度
B、向右平移3個(gè)單位長(zhǎng)度
C、向左平移1個(gè)單位長(zhǎng)度
D、向右平移1個(gè)單位長(zhǎng)度
考點(diǎn):函數(shù)的圖象與圖象變化
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:比較函數(shù)y=31-x與函數(shù)y=3-x的關(guān)系,可得出兩個(gè)函數(shù)圖象之間的關(guān)系.
解答: 解:因?yàn)閥=31-x=3-(x-1)
所以要得到函數(shù)y=31-x的圖象,則只需要把函數(shù)y=3-x的圖象向右平移1個(gè)單位,即可.
故選D.
點(diǎn)評(píng):本題考查函數(shù)圖象的變化關(guān)系,比較兩個(gè)函數(shù)的關(guān)系式,觀察變量之間的關(guān)系,從而確定圖象之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,下列表達(dá)式為常數(shù)的是( 。
A、sin(A+B)+sinC
B、cos(B+C)-cosA
C、tan
A+B
2
•tan
C
2
D、cos
B+C
2
•tan
A
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=x2+ax+b.對(duì)任意實(shí)數(shù)x,都存在y,使得f(y)=f(x)+y,則a的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x、y滿足約束條件
2x-y≤2
x-y≥-1
x+y≥1
,則x2+y2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)統(tǒng)計(jì)資料,某工廠的日產(chǎn)量不超過20萬(wàn)件,每日次品率P與日產(chǎn)量x(萬(wàn)件)之間近似地滿足關(guān)系式p=
x2+60
540
(0<x<≤12)
1
2
(12<x≤20)
,已知每生產(chǎn)1件正品可盈利2元,而生產(chǎn)1件次品虧損1元,(該工廠的日利潤(rùn)y=日正品盈利額-日次品虧損額).
(1)將該過程日利潤(rùn)y(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(2)當(dāng)該工廠日產(chǎn)量為多少萬(wàn)件時(shí)日利潤(rùn)最大?最大日利潤(rùn)是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x2+2x+2,x≤0
-x2,x>0.
,若f(f(a))=5,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)為A(0,-1),B(0,1),平面內(nèi)兩點(diǎn)G,M同時(shí)滿足:
①G為△ABC的重心;
②M到△ABC三點(diǎn)A,B,C的距離相等;
③直線GM的傾斜角為
π
2

(1)求證:頂點(diǎn)C在定橢圓E上,并求橢圓E的方程;
(2)設(shè)P,Q,R,N都在曲線E上,點(diǎn)F(
2
,0)
,直線PQ與RN都過點(diǎn)F并且相互垂直,求四邊形PRQN的面積S的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2),
b
=(1,1),且向量
a
a
+m
b
的夾角為銳角,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
(x2-6x+8)
的單調(diào)減區(qū)間為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案