【題目】如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn) 分別為AC,BP中點.
(Ⅰ)求證EF∥平面PCD;
(Ⅱ)求直線DP與平面ABCD所成角的正弦值.

【答案】(Ⅰ)證明:因為E為AC中點,所以DB與AC交于點E. 因為E,F(xiàn)分別為AC,BP中點,所以EF是△BDP的中位線,
所以EF∥DP.
又DP平面PCD,EF平面PCD,
所以EF∥平面PCD.
(Ⅱ)解:取AB中點O,連接PO,DO.

∵△PAB為正三角形,∴PO⊥AB,
又∵平面ABCD⊥平面PAB
∴PO⊥平面ABCD,∴DP在平面ABCD內的射影為DO,∠PDO為DP與平面ABCD所成角,
OP= ,DP= ,在Rt△DOP中,sin∠PDO=
∴直線DP與平面ABCD所成角的正弦值為
【解析】(Ⅰ)連結BD,則E為BD的中點,利用中位線定理得出EF∥PD,故而EF∥面PCD;(Ⅱ)取AB中點O,連接PO,DO,得出PO⊥平面ABCD,于是,∠PDO為DP與平面ABCD所成角,求出OP,DP,得直線DP與平面ABCD所成角的正弦值.
【考點精析】關于本題考查的直線與平面平行的判定和空間角的異面直線所成的角,需要了解平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(2)=4,定義域為R的函數(shù)f(x)=是奇函數(shù).
(1)確定y=g(x)的解析式;
(2)求m,n的值;
(3)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,BC=2AD,PB⊥AC,Q是線段PB的中點.
(Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)求證:AQ∥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調性;

(2)若直線與曲線的交點的橫坐標為,且,求整數(shù)所有可能的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A={x|2x2+ax+2=0},B={x|x2+3x﹣b=0},且A∩B={2}.
(1)求a,b的值;
(2)設全集U=AUB,求(UA)U(UB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)五邊形中,

,沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.

1)求證:平面平面

2)若直線與所成角的正切值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P﹣ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點E在棱PD上,且BE⊥PD.
(1)求異面直線PA與CD所成的角的大。
(2)求證:BE⊥平面PCD;
(3)求二面角A﹣PD﹣B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓G:x2﹣x+y2=0,經過拋物線y2=2px的焦點,過點(m,0)(m<0)傾斜角為 的直線l交拋物線于C,D兩點. (Ⅰ)求拋物線的方程;
(Ⅱ)若焦點F在以線段CD為直徑的圓E的外部,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△PAB與△PAD均是以A為直角頂點的等腰直角三角形,點F是PB的中點,點E是邊BC上的任意一點.
(1)求證:AF⊥EF;
(2)求二面角A﹣PC﹣B的平面角的正弦值.

查看答案和解析>>

同步練習冊答案