17.定義在實(shí)數(shù)集R上的凼數(shù)f(x)圖象連續(xù)不斷,且f(x)滿足xf′(x)<0,則必有( 。
A.f(-2)+f(1)>f(0)B.f(-1)+f(1)>2f(0)C.f(-2)+f(1)<f(0)D.f(-1)+f(1)<2f(0)

分析 先由xf′(x)<0便可得到$\left\{\begin{array}{l}{x<0}\\{f′(x)>0}\end{array}\right.,或\left\{\begin{array}{l}{x>0}\\{f′(x)<0}\end{array}\right.$,從而根據(jù)極大值的定義即可判斷出f(0)是f(x)的極大值,并是最大值,從而f(-1)<f(0),f(1)<f(0),所以便得到f(-1)+f(1)<2f(0).

解答 解:由xf′(x)<0得:
x∈(-∞,0)時(shí),f′(x)>0;x∈(0,+∞)時(shí),f′(x)<0;
∴f(0)是f(x)的極大值,也是最大值;
所以對(duì)于任意x∈R,f(x)≤f(0);
∴$\left\{\begin{array}{l}{f(-1)<f(0)}\\{f(-2)<f(0)}\\{f(1)<f(0)}\end{array}\right.$;
所以必有f(-1)+f(1)<2f(0).
故選:D.

點(diǎn)評(píng) 考查極大值的定義,以及利用導(dǎo)數(shù)判斷極大值的過程,以及最大值的概念,及其求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.滿足條件|z-2i|+|z+1|=$\sqrt{5}$的點(diǎn)的軌跡是線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,過拋物線上一點(diǎn)P作PM垂直l于M,若∠PFM=60°,則△PFM的面積為( 。
A.p2B.$\sqrt{3}$p2C.2p2D.2$\sqrt{3}$p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知M(a,2)是拋物線y2=2x上的一定點(diǎn),直線MP、MQ的傾斜角之和為π,且分別與拋物線交于P、Q兩點(diǎn),則直線PQ的斜率為( 。
A.-$\frac{1}{4}$B.-$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知拋物線$y=\frac{1}{4}{x^2}$,過點(diǎn)P(0,2)作直線l,交拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則$\overrightarrow{OA}•\overrightarrow{OB}$=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{k}^{2}+2k(1-{a}^{2}),x≥0}\\{{x}^{2}-2(1-{a}^{2})x+(a-4)^{2},x<0}\end{array}\right.$,a∈R,若對(duì)任意非零實(shí)數(shù)x1,存在非零實(shí)數(shù)x2(x1≠x2),使得f(x2)=f(x1),則實(shí)數(shù)k的最小值( 。
A.$\frac{15}{2}$B.$-\frac{15}{2}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.拋物線C:x2=2py(p>0)的準(zhǔn)線的方程為y=-1.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)在拋物線C上是否存在點(diǎn)P,使得過點(diǎn)P處的直線交C于另一點(diǎn)Q,滿足以線段PQ為直徑的圓經(jīng)過拋物線的焦點(diǎn),且PQ與拋物線C在點(diǎn)P處的切線垂直,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=f(x)的圖象過原點(diǎn)且它的導(dǎo)函數(shù)y=f′(x)的圖象是如圖所示的一條直線,y=f(x)的圖象的頂點(diǎn)在( 。
A.第Ⅰ象限B.第Ⅱ象限C.第Ⅲ象限D.第Ⅳ象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知c=6,sinA-sinC=sin(A-B).
(Ⅰ)若b=2$\sqrt{7}$,求△ABC的面積;
(Ⅱ)若1≤a≤6,求sinC的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案