A. | f(-2)+f(1)>f(0) | B. | f(-1)+f(1)>2f(0) | C. | f(-2)+f(1)<f(0) | D. | f(-1)+f(1)<2f(0) |
分析 先由xf′(x)<0便可得到$\left\{\begin{array}{l}{x<0}\\{f′(x)>0}\end{array}\right.,或\left\{\begin{array}{l}{x>0}\\{f′(x)<0}\end{array}\right.$,從而根據(jù)極大值的定義即可判斷出f(0)是f(x)的極大值,并是最大值,從而f(-1)<f(0),f(1)<f(0),所以便得到f(-1)+f(1)<2f(0).
解答 解:由xf′(x)<0得:
x∈(-∞,0)時(shí),f′(x)>0;x∈(0,+∞)時(shí),f′(x)<0;
∴f(0)是f(x)的極大值,也是最大值;
所以對(duì)于任意x∈R,f(x)≤f(0);
∴$\left\{\begin{array}{l}{f(-1)<f(0)}\\{f(-2)<f(0)}\\{f(1)<f(0)}\end{array}\right.$;
所以必有f(-1)+f(1)<2f(0).
故選:D.
點(diǎn)評(píng) 考查極大值的定義,以及利用導(dǎo)數(shù)判斷極大值的過程,以及最大值的概念,及其求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p2 | B. | $\sqrt{3}$p2 | C. | 2p2 | D. | 2$\sqrt{3}$p2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{15}{2}$ | B. | $-\frac{15}{2}$ | C. | $-\frac{2}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第Ⅰ象限 | B. | 第Ⅱ象限 | C. | 第Ⅲ象限 | D. | 第Ⅳ象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com