A. | $\frac{15}{2}$ | B. | $-\frac{15}{2}$ | C. | $-\frac{2}{3}$ | D. | $\frac{2}{3}$ |
分析 利用函數的連續(xù)性,列出方程,通過方程有實數解,得到不等式求解k的范圍即可.
解答 解:函數f(x)=$\left\{\begin{array}{l}{{x}^{2}+2k(1-{a}^{2}),x≥0}\\{{x}^{2}-2(1-{a}^{2})x+(a-4)^{2},x<0}\end{array}\right.$,a∈R,
則x=0時,f(x)=2k(1-a2).對任意非零實數x1,存在非零實數x2(x1≠x2),使得f(x2)=f(x1),
∴函數必須是連續(xù)函數,即在x=0附近的左右兩側函數值相等.
(a-4)2=2k(1-a2),a∈R,所以k≠0,
即(2k+1)a2-8a+16-2k=0有實數解.
∴△=82-4(2k+1)(16-2k)≥0.
整理得:2k2-15k≥0,解得k≥$\frac{15}{2}$.或k<0,當k<0時,k沒有最小值.
故選:A.
點評 本題考查分段函數的應用,函數的連續(xù)性的應用,考查分析問題解決問題的能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(-2)+f(1)>f(0) | B. | f(-1)+f(1)>2f(0) | C. | f(-2)+f(1)<f(0) | D. | f(-1)+f(1)<2f(0) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{9}{32}$ | B. | $\frac{7}{32}$ | C. | $\frac{9}{16}$ | D. | $\frac{7}{16}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com