10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,若直線AB過F1,與橢圓交于A,B兩點(diǎn),且|AB|=|BF2|,AB⊥BF2,則橢圓的離心率為$\sqrt{6}$-$\sqrt{3}$.

分析 由橢圓定義可得:|AB|+|BF2|+|AF2|=4a,設(shè)|AB|=|BF2|=m,由于AB⊥BF2,利用勾股定理可得:2m2=(4a-2m)2,(2a-m)2+m2=4c2,解出即可得出.

解答 解:由橢圓定義可得:|AB|+|BF2|+|AF2|=4a,
設(shè)|AB|=|BF2|=m,∵AB⊥BF2,
則2m2=(4a-2m)2,(2a-m)2+m2=4c2,
解得e=$\frac{c}{a}$=$\sqrt{6}$-$\sqrt{3}$.
故答案為:$\sqrt{6}$-$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì)、勾股定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$,(x∈R)
(1)當(dāng)x∈[-$\frac{π}{12}$,$\frac{5π}{12}$]時(shí),求函數(shù)f(x)的值域.
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=0,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.直線x+ay+3=0和直線x+a(a-1)y+(a2-1)=0平行,則a的值為(  )
A.2B.0C.0或2D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足$\frac{{a}_{1}-1}{2}$+$\frac{{a}_{2}-1}{{2}^{2}}$+…+$\frac{{a}_{n}-1}{{2}^{n}}$=n2+n(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,問是否存在實(shí)數(shù)λ使得$\frac{{{S_{n+1}}}}{{{a_n}+λ(n+1)}}$是一個(gè)與n無關(guān)的常數(shù),若存在,求出λ的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=|x-1|-1,x∈R.
(1)求f[f(-1)],f[f(1)];
(2)求f(x)的值域及最值;
(3)畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將石子擺成如圖所示的梯形形狀.稱數(shù)列5,9,14,20,…為“梯形數(shù)”.根據(jù)圖形的構(gòu)成,此數(shù)列的第2 014項(xiàng)與5的差,即a2014-5=(  )
A.2 018×2 012B.2 020×2 013C.1 009×2 012D.1 010×2 013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在四邊形ABCD中,任意兩頂點(diǎn)之間恰做一個(gè)向量,做出所有的向量,其中3邊向量之和為零向量的三角形稱為“零三角形”,設(shè)以這4個(gè)頂點(diǎn)確定的三角形的個(gè)數(shù)為n,設(shè)在所有不同情況中的“零三角形”個(gè)數(shù)的最大值為m,則$\frac{m}{n}$等于( 。
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知c=2,C=$\frac{π}{3}$.
(Ⅰ)當(dāng)2sin2A+sin(2B+C)=sinC時(shí),求△ABC的面積;
(Ⅱ)求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1).已知f(x)=x-2,x∈{0,1,2,3},求f(x)的值域.
(2)已知f(x)的定義域?yàn)閇-2,3),求函數(shù)f(x+1)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案