10.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f″是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.請你根據(jù)這一發(fā)現(xiàn)為條件,若給定函數(shù)g(x)=$\frac{1}{3}{x^3}-\frac{1}{2}{x^2}+2x-\frac{5}{12}$,則g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=1008.

分析 由題意對已知函數(shù)求兩次導(dǎo)數(shù)可得圖象關(guān)于點($\frac{1}{2}$,$\frac{1}{2}$)對稱,即f(x)+f(1-x)=1,即可得到結(jié)論.

解答 解:函數(shù)的導(dǎo)數(shù)g′(x)=x2-x+2,
g″(x)=2x-1,
由g″(x0)=0得2x0-1=0
解得x0=$\frac{1}{2}$,而g($\frac{1}{2}$)=$\frac{1}{2}$,
故函數(shù)g(x)關(guān)于點($\frac{1}{2}$,$\frac{1}{2}$)對稱,
∴g(x)+g(1-x)=1,
故設(shè)g($\frac{1}{2017}$)+g($\frac{2}{2017}$)+g($\frac{3}{2017}$)+…+g($\frac{2016}{2017}$)=m,
則g($\frac{2016}{2017}$)+g($\frac{2015}{2017}$)+…g($\frac{1}{2017}$)=m,
兩式相加得1×2016=2m,
則m=1008,
故答案為:1008

點評 本題主要考查導(dǎo)數(shù)的基本運算,利用條件求出函數(shù)的對稱中心是解決本題的關(guān)鍵.求和的過程中使用了倒序相加法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.用數(shù)字1,2,3,4,5,6,7,8,9組成沒有重復(fù)數(shù)字,且至多有一個數(shù)字是偶數(shù)的四位數(shù),這樣的四位數(shù)一共有1080個.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的部分圖象如圖所示,下列說法正確的有(  )個
①函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{5π}{12}$對稱
②函數(shù)f(x)在$[-\frac{π}{3},0]$上單調(diào)遞增
③函數(shù)f(x)的圖象關(guān)于點$(-\frac{2π}{3},0)$對稱
④將函數(shù)y=2sin2x的圖象向左平移$\frac{π}{3}$個單位得到f(x)的圖象.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求解以下兩小題:
(1)91100除以100的余數(shù)是幾?
(2)若(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.求:
(i)a1+a2+a3+…+a11;
(ii)a0+a2+a4+…+a10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義在R上的函數(shù)f(x),如果對任意的x都有f(x+6)≤f(x)+3,f(x+2)≥f(x)+1,f(4)=309,則f(2 014)=1314.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=x3+3x2+6x+14且f(a)=1,f(b)=19.則a+b=( 。
A.2B.1C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)點P在面積為2的正△ABC內(nèi)部運動,若動點P使得△PBC,△PAB,△PAC的面積都不大于1,則動點P的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.甲、乙、丙三人投擲飛鏢,他們的成績(環(huán)數(shù))如下面的頻數(shù)條統(tǒng)計圖所示.則甲、乙、丙三人的訓(xùn)練成績方差S2,S2,S2的大小關(guān)系是S2<S2<S2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知曲線C1:y=ex與曲線C2:y=(x+a)2.若兩個曲線在交點處有相同的切線,則實數(shù)a的值為2-ln4.

查看答案和解析>>

同步練習(xí)冊答案