1.如圖,已知△ABC,CD為∠ACB的角平分線,沿直線CD將△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角為θ,則( 。
A.∠A′DB≤θ,∠A′CB≤θB.∠A′DB≤θ,∠A′CB≥θC.∠A′DB≥θ,∠A′CB≤θD.∠A′DB≥θ,∠A′CB≥θ

分析 當AC=BC時,∠A′DB=θ,∠A′CB<θ;當AC≠BC時,作出圖形,數(shù)形結(jié)合能得到∠A′DB≥θ,∠A′CB≤θ.

解答 解:①當AC=BC時,∠A′DB=θ,∠A′CB<θ,
②當AC≠BC時,如圖,點A′投影在AE上,
θ=∠A′OE,連結(jié)AA′,
∠ADA′<∠AOA′,
∴∠A′DB>∠A′OE,∠A′OE≥∠A′CE,
即∠A‘DB>θ.
綜上,∠A′DB≥θ,∠A′CB≤θ.
故選:C.

點評 本題考查角的大小的比較,是中檔題,解題時要認真審題,注意數(shù)形結(jié)合思想的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.若向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$+$\overrightarrow$=(2,-1),$\overrightarrow{a}$=(1,2),則$\overrightarrow{a}$•$\overrightarrow$=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某校對高一年級學生寒假參加社區(qū)服務的次數(shù)進行了統(tǒng)計,隨機抽取了M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計表和頻率分布直方圖如圖:
分組頻數(shù)頻率
[10,15)200.25
[15,20)50n
[20,25)mp
[25,30)40.05
合計MN
(Ⅰ)求表中n,p的值和頻率分布直方圖中a的值,并根據(jù)頻率分布直方圖估計該校高一學生寒假參加社區(qū)服務次數(shù)的中位數(shù);
(Ⅱ)如果用分層抽樣的方法從樣本服務次數(shù)在[10,15)和[25,30)的人中共抽取6人,再從這6人中選2人,求2人服務次數(shù)都在[10,15)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知直角坐標系中,曲線C參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=2-2sinα}\end{array}\right.$(0≤α≤2π),現(xiàn)以直角坐標系的原點為極點,以x軸正半軸為極軸,建立極坐標系,則曲線C的極坐標方程是ρ=4sinθ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,∠ADC=90°,AD∥BC,平面PAD⊥底面ABCD,BC=$\frac{1}{2}$AD,PA=AD=AB=2,Q為AD的中點
(1)求證:平面PQB⊥平面PAD;
(2)若直線PA與平面ABCD所成的角為60°,M是棱PC上的點.
①經(jīng)過M,B作平面α,使直線CD∥α并說明理由;
②若PM=tMC,二面角M-BQ-C的平面角的大小為30°,求AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設f(x)=cosx+(π-x)sinx,x∈[0,2π],則函數(shù)f(x)所有的零點之和為2π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=|log2x|.若0<b<a,且f(a)=f(b),則2a+b的取值范圍是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-$\frac{1}{{e}^{|x|}}$.
(1)若f(x)=2,求x的值;
(2)若etf(2t)+mf(t)≥0對t∈[1,2]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.從某大學隨機抽取的5名女大學生的身高x(厘米)和體重y(公斤)數(shù)據(jù)如表
x165160175155170
y58526243
根據(jù)上表可得回歸直線方程為$\hat y$=0.92x-96.8,則表格中空白處的值為60.

查看答案和解析>>

同步練習冊答案